动态规划(Dynamic Programming)

动态规划是分治思想的延伸,就像之前的递归一样,大问题分解成小问题。
但是递归有个不好的地方,对于复杂问题时间,空间复杂度十分的高,结果也不会保存。
比如:快速排序,没有三数取中优化的话,会导致栈溢出。
所以动态规划一般都是采用非递归,而且结果可以保存,这就是他们本质的区别。
动态规划特点:

  1. 把原来的问题分解成几个相似的子问题
  2. 所有的子问题只需解决一次
  3. 储存子问题的解

动态规划的本质,是对问题状态的定义状态转移方程的定义(状态以及状态之间的递推关系)
所以动规问题一般从以四下个角度考虑:

  1. 状态定义
  2. 状态之间的转移方程定义
  3. 状态的初始化
  4. 返回结果

定义的状态一定要形成递推关系。三个特点,四个要素,两个本质
当问题看到这样的场景就可以考虑动态规划:

  • 最大值、最小值
  • 可不可行
  • 是不是
  • 方案个数

斐波那契数列

在这里插入图片描述

递归解法

假如递归来算的话,空间复杂度O(N),时间复杂度O(2^n),对数字非常敏感,所以数字大的时候是不可取的

class Solution {
public:
    int Fibonacci(int n) {
      if(n==0)
          return 0;
      if(n==1||n==2)
      {
            return 1;
      }
        return Fibonacci(n-1)+Fibonacci(n-2);
    }
};

动态规划解法

问题: 数列第N项的值。

问题状态F(i): 数列第i项的值
转移方程: F(i)=F(i-1)+F(i-2)
初始状态: 方程中两个状态,F(0)=0,F(1)=1
返回结果 :F(N)

用数组保存之前的结果,之后用到直接从数组拿。

class Solution {
public:
    int Fibonacci(int n) {

       vector<int> F(n+1,0);
       
       F[1]=1;
        for(int i=2;i<n+1;i++)
        {
         F[i]=F[i-1]+F[i-2];
        }
        return F[n];
    }
};

而它的时间复杂度O(N),空间复杂度也是O(N)

优化空间

由于不需要保存所有子问题的解,只需要两个变量来保存相邻的两项,不断地更新这两个变量就好.

class Solution {
public:
    int Fibonacci(int n) {
        //F[n-2]
     int Fn2=0;
        //F[n-1]
     int Fn1=1;
     int Fn=0;
        if(n<=0)
            return 0;
        if(n==1)
            return 1;
        for(int i=2;i<=n;i++)
        {
            Fn=Fn1+Fn2;
            Fn2=Fn1;
            Fn1=Fn;
        }
        return Fn;
    }
};

时间复杂度O(N),空间复杂度O(1)

变态青蛙跳台阶

在这里插入图片描述

问题:跳上n级台阶方法的个数。(并没有说你跳上n级台阶方法具体是怎么样的)
在这里插入图片描述

问题状态F[i]:跳上第i级台阶方法的个数
在这里插入图片描述

在这里插入图片描述

状态转移方程: F[i]=2F[i-1]
初始状态:
在这里插入图片描述

返回结果:F[N]

然后计算2的n-1次方就好。
排列的思想也可以
每个台阶看成一个位置,除过最后一个位置,其它位置都有两种可能性,
所以总的排列数为2^(n-1)*1 = 2^(n-1)

class Solution {
public:
    int jumpFloorII(int number) {
       if(number<=0)
           return 0;
        int ret=1;
        for(int i=1;i<number;i++)
        {
           ret*=2;
        }
        return ret;
    }
};

也可以用移位,时间复杂度O(1)

class Solution {
public:
    int jumpFloorII(int number) {
        if(number<=0)
            return 0;
           
        return 1<<(number-1);
    }
};

扩展1:

上述问题为变态青蛙跳台阶。现在让它变成一个正常的青蛙,限制它
一次只能跳1阶或者2阶,求跳到第n阶的方法。
F[i]=F[i-1]+F[i-2]

扩展2:矩形覆盖

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。
请问用n个2
1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

问题状态:用i个小矩形覆盖2*i个大矩形,求方法个数
在这里插入图片描述

在这里插入图片描述
将他们看成两种情况,两种情况构成两种不同的方法
转移方程:F(i-1)+F(i-2)

求最大连续子序列的和

在这里插入图片描述

假如全为正数,全部累加就是最大。

问题:求数组最大连续和
子问题:局部元素构成的数组,他的最大连续和
问题状态:前i个元素组成的数组,他的最大连续子序列的和
在这里插入图片描述
重新定义问题状态:以第i个元素结尾的最大子序列的和
在这里插入图片描述

状态转移方程:F(i)=max(F(i-1)+a[i],a[i]),求出加上那个元素大,还是他自己本身大,F[i]不是最终结果,需要最后比较)
初始状态:F(0)=a[0]
返回值:返回值并不是最大的,需要在F[i]里面选出最大的那一个。
即dp[i],是以第i个元素结尾的最大子序和。需要找出dp[i]中最大的一个。

普通解法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n=nums.size();
        if(n==0)
        return 0;
        vector<int> dp(n,0);
        dp[0]=nums[0];
        int maxN=nums[0];
        for(int i=1;i<n;i++)
        {
            dp[i]=max(dp[i-1]+nums[i],nums[i]);

            maxN=maxN>dp[i]?maxN:dp[i];
        }
        return maxN;
    }
};

优化空间

以前的dp[i]是不用关心的,只关心上一个dp[i-1],所以用一个变量来保存上一个dp[i-1],每次更新即可。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n=nums.size();
        if(n==0)
        return 0;

        int maxV=nums[0];
        int maxN=0;

        for(int i=0;i<n;i++)
        {  
           maxN=max(nums[i],maxN+nums[i]);
           maxV=maxV>maxN?maxV:maxN;
          
        }

        return maxN;
    }
};

单词拆分

在这里插入图片描述

普通解法

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> dict(wordDict.begin(),wordDict.end());

        if(dict.size()==0||s.size()==0)
        return false;
        int n=s.size();
        vector<bool> dp(n+1);
        dp[0]=true;
        
        for(int i=1;i<=n;++i)
        {
            for(int j=0;j<i;++j)
            {
                //可以就退出
                if(dp[j] && (dict.find(s.substr(j,i-j)))!=dict.end())
                {
                    dp[i]=true;
                    break;
                }
            }
        }
        return dp[n];
    }
};

三角型最小路径和

普通解法

在这里插入图片描述

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        //拷贝构造
        vector<vector<int>> dp(triangle);
          
        int row=triangle.size();
        //int col=triangle.size();
        for(int i=1;i<row;i++)
        {
            //第二行(下标为1),两个元素,0<=1循环就会处理两个元素。第三次
            //for(int j=0;j<triangle.size();j++);第二次太麻烦了
            //for(int j=0;j<col;j++);第一次写错了

            for(int j=0;j<=i;j++)
            {
                //边界处理
                if(j==0)
                dp[i][j]=dp[i-1][j]+triangle[i][j];
                else if(i==j)
                dp[i][j]=dp[i-1][j-1]+triangle[i][j];
                else
                dp[i][j]=min(dp[i-1][j],dp[i-1][j-1])+triangle[i][j];
                

            }
          
        }
        //第四行有4列元素,自顶向下,到这四个元素那个小,就是哪个
        //先确定最后一行第一个元素
        int minN=dp[row-1][0];
        //即遍历最后一行的dp数组,由于行数等于列数,所以row
        for(int j=0;j<row;j++)
        {
            minN=minN<dp[row-1][j]?minN:dp[row-1][j];
        }
        return minN;
    }
};

自底向上优化

在这里插入图片描述

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
        vector<vector<int>> dp(triangle);
        int row=triangle.size();
        
        //自底向上
        //row=4,i=2,从第3行(下标为2)开始,i=2,j=2,
        //...
        for(int i=row-2;i>=0;--i)
        {
            for(int j=0;j<=i;j++)
            {
            dp[i][j]=min(dp[i+1][j],dp[i+1][j+1])+triangle[i][j];
            }
        }

        return dp[0][0];
    }
};

路径总数

在这里插入图片描述

class Solution {
public:
    /**
     * 
     * @param m int整型 
     * @param n int整型 
     * @return int整型
     */
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m,vector<int>(n,1));
        
        for(int i=1;i<m;i++)
        {
           for(int j=1;j<n;j++)
           {
               dp[i][j]=dp[i-1][j]+dp[i][j-1];
           }
        }
        return dp[m-1][n-1];
        
    }
};

有障碍的路径总数

和上一题差不多,只不过加入了障碍,当他们为最上,和最左两个边界时,只要遇到有障碍,就必须停止赋1操作。其他情况递推时,当前没有障碍递推即可。

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
                int m=obstacleGrid.size();
                int n=obstacleGrid[0].size();
                vector<vector<int>> dp(m,vector<int>(n,0));

                //一个有障碍,整条路径都只能为0,即停止赋1操作
                for(int i=0;i<m && obstacleGrid[i][0]==0;++i)
                {
                       dp[i][0]=1;
                }
                for(int i=0;i<n && obstacleGrid[0][i]==0;++i)
                {
                        dp[0][i]=1;
                }
                //没有障碍时,才能计算dp[i][j]
                for(int i=1;i<m;++i)
                {
                    for(int j=1;j<n;j++)
                    {
                        if(obstacleGrid[i][j]==0)
                        {
                        dp[i][j]=dp[i-1][j]+dp[i][j-1];
                        }
                    }
                }
                return dp[m-1][n-1];
    }
};

最小路径和

在这里插入图片描述

class Solution {
public:
    /**
     * 
     * @param grid int整型vector<vector<>> 
     * @return int整型
     */
    int minPathSum(vector<vector<int> >& grid) {
        int m=grid.size();
        int n=grid[0].size();
        vector<vector<int>> dp(grid);
        
        for(int i=1;i<m;i++)
        {
            dp[i][0]=dp[i-1][0]+grid[i][0];
        }
        for(int j=1;j<n;j++)
        {
            dp[0][j]=dp[0][j-1]+grid[0][j];
        }
        
        for(int i=1;i<m;i++)
        {
            for(int j=1;j<n;j++)
            {
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        return dp[m-1][n-1];
    }
};
  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楠c

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值