Adaptive dynamic programming_自适应动态规划

ADP是一种机器学习分支,专注于为动态系统构建控制器。它适用于数学建模困难或参数不确定的复杂系统。ADP算法通过试错学习最优控制策略,并实时控制系统。系统被建模为马尔科夫决策过程,目标是学习能最大化长期性能的控制策略。算法包括批评和演员两个组件,批评估计值函数,演员基于估计值更新控制策略。ADP已成功应用于机器人和控制系统等领域,因其从经验中学习和适应变化条件的能力而表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Adaptive dynamic programming (ADP), also known as approximate dynamic programming, neuro-dynamic programming, and reinforcement learning (RL), is a class of promising techniques to solve the problems of optimal control for discrete-time (DT) and continuous-time (CT) nonlinear systems.

ADP is a branch of machine learning that focuses on building controllers for dynamical systems. ADP is particularly useful for complex systems that are difficult to model mathematically or have uncertain parameters. ADP algorithms use a trial-and-error process to learn the optimal control policy for a given system, which is then used to control the system in real-time.

ADP is inspired by biological systems, which are able to learn from experience and adapt to changing conditions. In ADP, the system is modeled as a Markov decision process (MDP), where the state of the system is modeled as a set of variables and the control policy is modeled as a mapping from the current state to an action. The goal of ADP is to learn the optimal control policy, which maximizes a performance metric over time.

ADP algorithms typically consist of two main components: a critic and an actor. The critic estimates the value function, which measures the long-term performance of the control policy, while the actor updates the control policy based on the estimated value function. ADP algorithms use a form of temporal difference learning to update the critic and actor iteratively, using the difference between the estimated value function and the actual value function to adjust the control policy.

ADP has been successfully applied to a wide range of applications, including robotics and control systems. Its ability to learn from experience and adapt to changing conditions makes it a powerful tool for building robust controllers for complex systems.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值