LeetCode685:冗余连接II(并查集)

冗余连接II


相比于冗余连接1把无向图换成有向图,所以需要分类讨论。

有环边:

在这里插入图片描述
测试样例:[[1,2],[2,3],[3,1]]
输出:[3,1]

有冲突

在这里插入图片描述
测试样例:[[1,2],[1,3],[2,3]]
输出:[2,3]

显然,对于以上两种情况,只存在
1.有环边无冲突
2.无环边有冲突
第一种情况成环的边显然是最后一个输入的边
第二种情况冲突的边就是使一个节点有了第二个父亲节点的边
这两种情况只需要存储那条边并输出即可。

有环边有冲突

在这里插入图片描述
测试样例:[[2,1],[3,1],[4,2],[1,4]]
输出:[2,1]

对于测试样例,
[3,1]是冲突边,它使得节点1拥有两个父节点;
[1,4]是环边,它使得2->1->4形成环。
在这个图中我们应该删除的是[2,1],而我们要删除的边必然是冲突边的子节点和他的父节点构成的边

题意为:返回一条能删除的边,使得剩下的图是有 n 个节点的有根树。
则删除的边必然从有冲突的顶点的两条边中选:
在样例中是[2,1][3,1]
而对于环路来说,删除任意一条边都是等价的,都会使这个环路变成一棵树,所以删除的边必然是冲突顶点和他的父节点构成的边:
在样例中是[2,1].

我们利用并查集维护,只记录而不在并查集中连接冲突边和环边。
我们建一棵保存父节点的树,只要不发生冲突就记录,最终可以利用这课树返回有环边有冲突时要删除的边。

解决代码:

class Solution {
public:
    vector<int >a;
    vector<int >h;
    void unionfind(int n)
    {
        for(int i=0;i<=n;i++)
        {
            a.push_back(i);
            h.push_back(0);
        }
    }
    int find(int x)
    {
        return x==a[x]? x : a[x]=find(a[x]);
    }
    void unite(int x,int y)
    {
        x=find(x);
        y=find(y);
        if(x==y) return ;
        if(h[x]<h[y])
        {
            a[x]=y;
        }
        else
        {
            a[y]=x;
            if(h[x]==h[y]) h[x]++;
        }
    }
    bool same(int x,int y)
    {
        return find(x)==find(y);
    }
    vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
        int n=edges.size();
        unionfind(n);
        vector<int> num;
        vector<int> parent;
        for(int i=0;i<=n;i++)
            parent.push_back(i);
        int conflict=-1;
        int circle=-1;
        for(int i=0;i<n;i++)
        {
            int nodex=edges[i][0];
            int nodey=edges[i][1];
            if(parent[nodey]!=nodey)//冲突 连接两个根
            {
                conflict=i;
            }
            else
            {
                parent[nodey]=nodex;
                if(same(nodex,nodey)) circle=i;
                else unite(nodex,nodey);
            }
        }
        if(conflict<0) num=edges[circle];
        else
        {
            if(circle<0) num=edges[conflict];
            else
            {
                num.push_back(parent[edges[conflict][1]]);
                num.push_back(edges[conflict][1]);
            }
        }
        return num;
    } 
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新西兰做的饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值