数论第三节:整除的进一步性质与最小公倍数

整除的补充定理

辗转相除法

a = b q 1 + r 1 a=bq_1+r_1 a=bq1+r1
b = r 1 q 2 + r 2 b=r_1q_2+r_2 b=r1q2+r2

r n − 1 = r n ∗ q n + 1 + r n + 1 r_{n-1}=r_n*q_{n+1}+r_{n+1} rn1=rnqn+1+rn+1
r n + 1 = 0 r_{n+1}=0 rn+1=0时,迭代终止。所得的 r n r_n rn即为最大公约数 ( a , b ) (a,b) (a,b)
证明看上一节:数论第二节:最大公因数与辗转相除法证明

定理1

若a,b是任意的两个正整数,则
Q k ∗ a − P k ∗ b = ( − 1 ) k − 1 ∗ r k Q_k*a-P_k*b=(-1)^{k-1}*r_k QkaPkb=(1)k1rk
其中,
P 0 = 1 , P 1 = q 1 , P k = q k ∗ P k − 1 + P k − 2 P_0=1,P_1=q_1,P_k=q_k*P_{k-1}+P_{k-2} P0=1,P1=q1,Pk=qkPk1+Pk2
Q 0 = 1 , Q 1 = q 1 , Q k = q k ∗ Q k − 1 + Q k − 2 Q_0=1,Q_1=q_1,Q_k=q_k*Q_{k-1}+Q_{k-2} Q0=1,Q1=q1,Qk=qkQk1+Qk2
这里不做证明,而且这个定理也很少用到。但是这个定理的推论很重要
推论:
若a,b是任意两个不全为零的整数,则存在两个整数S,T,使得
a ∗ S + b ∗ T = ( a , b ) a*S+b*T=(a,b) aS+bT=(a,b)
证明:
Q n ∗ a − P n ∗ b = ( − 1 ) n − 1 ∗ r n Q_n*a-P_n*b=(-1)^{n-1}*r_n QnaPnb=(1)n1rn成立可知:
r n = ( − 1 ) n − 1 ∗ Q n ∗ a + ( − 1 ) n ∗ P n ∗ b r_n=(-1)^{n-1}*Q_n*a+(-1)^n*P_n*b rn=(1)n1Qna+(1)nPnb
所以 S = ( − 1 ) n − 1 ∗ Q n , T = ( − 1 ) n ∗ P n S=(-1)^{n-1}*Q_n,T=(-1)^n*P_n S=(1)n1QnT=(1)nPn

定理2

若a,b,c是三个整数,且(a,c)=1,b,c不全为0,则ab,c与b,c有相同的公因数。
证明:
因为a,c互质,所以存在S,T∈Z,使得
a ∗ S + c ∗ T = 1 a*S+c*T=1 aS+cT=1
两边同乘以b,得:
( a ∗ b ) ∗ S + c ∗ ( b ∗ T ) = b (a*b)*S+c*(b*T)=b (ab)S+c(bT)=b
设d为ab,c的任意一个公因数。则:
d ∣ a b , d ∣ c = > d ∣ b , d ∣ c d|ab,d|c=>d|b,d|c dab,dc=>db,dc
因为ab>b,所以b,c的公因数一定被ab,c的公因数包含,所以:
d ∣ c , d ∣ b = > d ∣ a b , d ∣ c d|c,d|b=>d|ab,d|c dc,db=>dab,dc
综上两式,得则ab,c与b,c有相同的公因数,证明完毕。
推论
(ab,c)=(b,c),当ac互素的时候成立。
证明:
ab,c与b,c的公因数都相同,那他们的最大公因数肯定也相同。

公倍数

定义

a 1 , a 2 , . . , a n a_1,a_2,..,a_n a1,a2,..,an n ( n ≥ 2 ) n(n≥2) n(n2)个整数,若d是这n个数的倍数,则d就叫这n个数的一个公倍数。
最小的公倍数称为最小公倍数,记做 [ a 1 , a 2 , . . . , a n ] [a_1,a_2,...,a_n] [a1,a2,...,an]

定理3

设a,b是任意两个正整数,则:
(1) a,b的所有公倍数就是[a,b]的所有倍数。
(2) [ a , b ] = a ∗ b / ( a , b ) [a,b]=a*b/(a,b) [a,b]=ab/(a,b)
注意辨析:最小公倍数可以整除任意公倍数,最大公约数可以被任意公约数整除。
(1)将公倍数表示为a,b的乘积方式,就可以证明,这里不再赘述。
(2)将a表示为若干个公因数的乘积,b也表示为若干个公因数的乘积。将上述乘积进行组合,再减去最大公因数(重复的乘积)就可以得到最小公倍数。具体证明不再赘述,这里举例说明下就行。
比如: a = 1 ∗ 3 ∗ 6 ∗ 7 = 126 a=1*3*6*7=126 a=1367=126, b = 1 ∗ 3 ∗ 7 ∗ 11 = 231 b=1*3*7*11=231 b=13711=231,他们的最大公因数为 3 ∗ 7 = 21 3*7=21 37=21。则ab= 1 ∗ 3 ∗ 6 ∗ 7 ∗ 1 ∗ 3 ∗ 7 ∗ 11 1*3*6*7*1*3*7*11 136713711,减去最大公约数,即减去重复计算的因子,得到 a b / ( a , b ) = 1 ∗ 3 ∗ 6 ∗ 7 ∗ 1 ∗ 11 = 1386 ab/(a,b)=1*3*6*7*1*11=1386 ab/(a,b)=1367111=1386,所以1386为最小公倍数。

推论

多个数的最大公约数计算如方法下:
[ a 1 , a 2 ] = m 2 [a_1,a_2]=m_2 [a1,a2]=m2
[ m 2 , a 3 ] = m 3 [m2,a_3]=m_3 [m2,a3]=m3
. . . ... ...
[ m n − 1 , a n ] = m n [m_{n-1},a_n]=m_n [mn1,an]=mn
可得:
[ a 1 , a 2 , . . . , a n ] = m n [a_1,a_2,...,a_n]=m_n [a1,a2,...,an]=mn
证明:
具体的证明方法同最大公约数,详见数论第二节:最大公因数与辗转相除法证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值