数学建模_高教杯
文章平均质量分 51
一只特立独行的猫
转行web3中。。。
展开
-
最大流_FF思想_EK算法
原题链接poj 1273问题图论中有一个重要问题,假设有一个水管网图,每根水管都规定了一个可以流的方向,从v号结点到u号结点最大允许通过的水量为c(v,u),有一个源点s存储了无限多的水,有一个汇点可以存储无限多的水。问:从源点流向汇点的水流的最大速率是多少?思路采用经典的EK算法,时间复杂度为O(n*m^2)n为结点数,m为边数,虽然上界很高,但是一般情况很能到上界,一般的情况要好的多。四个概念,一个定理:网络流的概念和定理非常多,为了不混淆,先只讲两个会用到的定理。1.反向边:这个概原创 2021-09-07 18:32:26 · 573 阅读 · 0 评论 -
微分方程_数值解_解析解_场线图_传染病模型
import numpy as npfrom scipy import integrateimport sympy#sol:通解 ics:初始条件 x:自变量 known_params:已知参数def apply_ics(sol, ics, x, known_params): #得到未知参数 free_params = sol.free_symbols - set(known_params) #将初始条件代入零阶偏导和一阶偏导 eqs = [(sol.lhs.d..原创 2021-08-08 20:19:17 · 898 阅读 · 0 评论 -
拟合函数:线性插值_样条插值(一维,二维,三维)_最小二乘拟合
拉格朗日插值法:可以用于少样本点的情况,一定可以返回较好的插值函数。当样本点较多时,函数复杂度急剧上升。样条插值法:低阶多项式进行拟合,误差比拉格朗日稍大,但是避免了龙格现象。...原创 2021-08-04 17:55:58 · 5015 阅读 · 0 评论 -
非线性规划
#求解一个函数fun的极值,注意是局部最优from numpy.core.fromnumeric import argsortfrom scipy.optimize import minimizeimport numpy as npdef fun(args): #返回一个args/x+x的函数 a=args v = lambda x:a/x[0]+x[0] return vif __name__ == "__main__": args = (1) ..原创 2021-08-02 23:16:57 · 208 阅读 · 0 评论 -
规划问题求解
#求解线性规划问题代码from scipy import optimizeimport numpy as np#规划函数的系数矩阵c = np.array([2,3,-5])#不等式约束的系数矩阵,规定是Ax<=C的形式,C是常数A = np.array([[-2,5,-1],[1,3,1]])#不等式约束的右边部分B = np.array([-10,12])#等式约束的系数矩阵Aeq = np.array([[1,1,1]])#等式约束的右边部分Beq = np.arra.原创 2021-08-01 10:33:14 · 230 阅读 · 0 评论