数论第6节:完全剩余系、欧拉函数通式及证明

完全剩余系的定理

定理1(同余集合)

若m是一个给定的正整数,则全部整数可以被分为m个集合,记做 K 0 , K 1 , . . . , K m − 1 K_0,K_1,...,K_{m-1} K0,K1,...,Km1,其中 K r ( r = 0 , 1 , . . . , m − 1 ) K_r(r=0,1,...,m-1) Kr(r=0,1,...,m1)是由一切形如 q m + r qm+r qm+r的整数组成的。这些集合具有下列性质:
(1) 每一个整数必包含在而且仅包含在上述的一个集合里面。
(2) 两个整数同在一个集合的充分必要条件是这两个整数模m同余。

定理2(剩余类与完全剩余系定义)

定理1中的 K 0 , K 1 , . . . , K m − 1 K_0,K_1,...,K_{m-1} K0,K1,...,Km1叫做模m的剩余类,一个剩余类中任一数叫做它同类的数的剩余。若 a 0 , a 1 , . . . , a m − 1 a_0,a_1,...,a_{m-1} a0,a1,...,am1是m个整数,并且其中任何两数都不在同一剩余类里面,则称其为模m的完全剩余系。

定理3(完全剩余系转换)

a 0 , a 1 , . . . , a m − 1 a_0,a_1,...,a_{m-1} a0,a1,...,am1 是模m的完全剩余系,且(a,m)=1,则 a ∗ a 0 + b , a ∗ a 1 + b , . . . , a ∗ a m − 1 + b a*a_0+b,a*a_1+b,...,a*a_{m-1}+b aa0+baa1+b,...,aam1+b 也是模m的完全剩余系。
证明:(反证法)
假设 a 0 , a 1 , . . . , a m − 1 a_0,a_1,...,a_{m-1} a0,a1,...,am1 是模m的完全剩余系,则 a a i + b 三 a a j + b ( m o d   m ) aa_i+b三aa_j+b(mod\ m) aai+baaj+b(mod m)。由同余式的性质, a a i 三 a a j ( m o d   m ) aa_i三aa_j(mod\ m) aaiaaj(mod m). 两边同除m,得 a i = a j ( m o d   m ) a_i=a_j(mod\ m) ai=aj(mod m),这与假设相矛盾。

定理4(完全剩余系扩充)

m 1 , m 2 m_1,m_2 m1,m2是互质的两个正整数,而 x 1 , x 2 x_1,x_2 x1,x2分别通过模 m 1 , m 2 m_1,m_2 m1,m2的完全剩余系,则 m 2 x 1 + m 1 x 2 m_2x_1+m_1x_2 m2x1+m1x2通过模 m 1 m 2 m_1m_2 m1m2的完全剩余系。
简要来说:
( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,则 { x 1 , x 2 , . . . , x m 1 } ∗ m 2 × { y 1 , y 2 , . . . , y m 2 } ∗ m 1 \{x_1,x_2,...,x_{m_1}\}*m_2×\{y_1,y_2,...,y_{m_2}\}*m_1 {x1,x2,...,xm1}m2×{y1,y2,...,ym2}m1 m 1 ∗ m 2 m_1*m_2 m1m2的完全剩余系。
PS:×代表笛卡尔积

欧拉函数φ(a)

欧拉函数定义

φ(a)是定义在正整数上的函数,它在正整数a上的值等于序列0,1,2…,a-1,中与a互质的数的个数。
规定φ(1)=1。

可积函数定理f(x)

若f(x)是在一切正整数上都有定义的函数,并且具有下述两个性质:
1、存在a∈正整数,s.t. f(a)≠0
2、对于任意 a 1 , a 2 ∈ a_1,a_2∈ a1,a2正整数,且 ( a 1 , a 2 ) = 1 , f ( a 1 ∗ a 2 ) = f ( a 1 ) f ( a 2 ) (a_1,a_2)=1,f(a_1*a_2)=f(a_1)f(a_2) (a1,a2)=1f(a1a2)=f(a1)f(a2)
则函数f(x)称为可积函数。
PS:欧拉函数就是可积函数。

欧拉函数的计算通式

( m 1 , m 2 ) = 1 (m_1,m_2)=1 (m1,m2)=1,则 φ ( m = m 1 ∗ m 2 ) = φ ( m 1 ) ∗ φ ( m 2 ) φ(m=m_1*m_2)=φ(m_1)*φ(m_2) φ(m=m1m2)=φ(m1)φ(m2)
若m可以被素数分解为 m = p 1 s 1 ∗ p 2 s 2 ∗ . . . ∗ p k s k m=p_1^{s_1}*p_2^{s_2}*...*p_k^{s_k} m=p1s1p2s2...pksk,则可得:
φ ( m ) = m ∏ i = 1 k ( 1 − 1 p i ) φ(m)={\rm{m}}\prod\limits_{i = 1}^k {(1 - \frac{1}{{{p_i}}})} φ(m)=mi=1k(1pi1)

证明:(通过既约剩余式的交叉相乘证明)
总体思路:证欧拉函数为可积函数->求既约简化剩余系->既求约简化剩余系个数
由于φ(m)=m的既约剩余系的个数
证明当 m = m 1 ∗ m 2 m=m_1*m_2 m=m1m2时,|m的既约剩余系|=| m 1 m_1 m1的既约剩余系|*| m 2 m_2 m2的既约剩余系|.
x 1 x_1 x1 m 1 m_1 m1的既约剩余系, x 2 x_2 x2 m 2 m_2 m2的既约剩余系,则 x 1 ∗ m 2 × x 2 ∗ m 1 x_1*m_2×x_2*m_1 x1m2×x2m1 m 1 ∗ m 2 m_1*m_2 m1m2既约剩余系。即 φ ( m ) = φ ( m 1 ∗ m 2 ) = ∣ x 1 ∗ m 2 × x 2 ∗ m 1 ∣ = ∣ x 1 × x 2 ∣ = ∣ x 1 ∣ ∗ ∣ x 2 ∣ = φ ( m 1 ) ∗ φ ( m 2 ) φ(m)=φ(m_1*m_2)=|x_1*m_2×x_2*m_1|=|x_1×x_2|=|x_1|*|x_2|=φ(m_1)*φ(m_2) φ(m)=φ(m1m2)=x1m2×x2m1=x1×x2=x1x2=φ(m1)φ(m2)
所以欧拉函数为可积函数。
设p为素数, a = p s a=p^s a=ps,且 1 , 2 , 3 , . . . , p s 1,2,3,...,p^s 1,2,3,...,ps中与a不互素的数一定是p的整数倍,即 p , 2 p , 3 p , . . . , p s − 1 p p,2p,3p,...,p^{s-1}p p,2p,3p,...,ps1p,总共有 p s − 1 p^{s-1} ps1个。则 φ ( a ) = φ ( p s ) = p s − p s − 1 = p s ∗ ( 1 − 1 p ) φ(a)=φ(p^s)=p^s-p^{s-1}=p^s*(1-\frac1 p) φ(a)=φ(ps)=psps1=ps(1p1)
所以 φ ( m ) = φ ( p 1 s 1 ) ∗ φ ( p 2 s 2 ) ∗ . . . ∗ φ ( p k s k ) = m ∏ i = 1 k ( 1 − 1 p i ) φ(m)=φ(p_1^{s_1})*φ(p_2^{s_2})*...*φ(p_k^{s_k})={\rm{m}}\prod\limits_{i = 1}^k {(1 - \frac{1}{{{p_i}}})} φ(m)=φ(p1s1)φ(p2s2)...φ(pksk)=mi=1k(1pi1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值