泊松分布是二项式分布的一种极限情况,一般用于时间或者面积这种可以无限细分的抽象概念。
问题引入
在一段时间T里面期望发生n次事件a,求在时间段T发生k次事件a的概率。(这里的期望指的是数学期望,就是n重伯努利试验中事件发生的概率乘以n)
推导过程
1.假设时间T是一个线,事件a发生在线T上的某一个点上,不妨先把点看成是一跟无限短的线。
2.将T进行n等分均分,并保证每等分的情况∈{发生一次,没有发生}。
这就将题目变成了一个二项分布的问题(二项等概率事件在n次实验下发生k次的概率问题),。
3.根据2就可以得出如下公式。
n就是区间的个数,但是由于题目讨论的是线上的点,所以可以让n趋向于无穷大,那区间足够小就可以视作一个点。p就是a发生在区间上的概率。
4.接着3继续分析,可以得到两个公式。
点的概率公式:
λ=np,即事件发生的数学期望。
时间段T内发生k次事件的概率:
第一个公式是该点发生事件a的概率公式,k(事件期望发生次数)除以n(实验次数),得到了事件a在该点发生的概率。第二个公式是利用二项分布公式的极限情况,算出的概率。
5.然后开始化简第二个公式。
根据化简后的公式,只需要知道λ,就可以很容易的求出在k为任意数的概率,相比于二项分布公式,大大简化了计算,解的误差也很小。
总结:
泊松分布用于解决可以无限细分的问题,或者是采用二项分布计算过于麻烦且精度要求没那么高的场合,总的思路就是将事件无限细分,让每个细分区间都可能发生两种情况,然后利用二项分布公式求的近似解。