秒懂Frobenius范数和迹的关系

作为一个理工科的学生,我们会经常在看论文时遇到带有Frobenius范数的公式,然后看着看着出现了迹!越看越糊涂,那他们到底是什么关系呢?Follow me! 让我带你秒懂

Frobenius 范数与迹(Trace)之间的关系是非常紧密的,在矩阵分析中,它们经常可以互相表示,特别是在计算矩阵的“大小”或描述矩阵之间的差异时。为了清晰地介绍它们之间的关系,我们从Frobenius范数的定义、迹的定义入手,并推导它们之间的具体联系。

1. Frobenius 范数的定义

Frobenius 范数用于衡量矩阵中所有元素的“幅度”或“整体大小”。对于矩阵 A \in \mathbb{R}^{m \times n},Frobenius 范数定义如下:

\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}

Frobenius 范数等于矩阵中所有元素的平方和的平方根。

Frobenius 范数的平方

\|A\|_F^2 = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2

这里表示的是矩阵 A中所有元素的平方和。

 

2. 迹(Trace)的定义

迹(Trace)是一个方阵的所有对角线元素的和。对于一个矩阵A \in \mathbb{R}^{n \times n}

\text{Tr}(A) = \sum_{i=1}^n a_{ii}

也就是说,迹是一个标量,表示矩阵对角线上所有元素的总和。

 

3. Frobenius 范数与迹的关系

Frobenius 范数的平方之间的关系如下:

\|A\|_F^2 = \text{Tr}(A^T A)

这个关系式表示,矩阵的 Frobenius 范数的平方等于矩阵 A的转置与 A相乘得到的新矩阵的迹。

3.1 推导过程

要理解为什么会有这样的关系,我们可以从计算的角度来看:

  • 给定矩阵 A \in \mathbb{R}^{m \times n},其元素为 a_{ij}
  • 矩阵的转置 A^T \in \mathbb{R}^{n \times m} 的元素为 a_{ji}​。

我们首先计算矩阵乘积 A^T A,它是一个 n \times n 的矩阵,其元素 (A^T A)_{ij}定义为:

(A^T A)_{ij} = \sum_{k=1}^m a_{ki} a_{kj}

对于迹 \text{Tr}(A^T A),我们只取对角线上的元素,即:

\text{Tr}(A^T A) = \sum_{i=1}^n (A^T A)_{ii} = \sum_{i=1}^n \sum_{k=1}^m a_{ki}^2

这与 Frobenius 范数的平方定义是一致的:

\|A\|_F^2 = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2

因此可以得出:

\|A\|_F^2 = \text{Tr}(A^T A)

 

3.2 举例说明

好的,我们使用一个 3×3 的矩阵来说明 Frobenius 范数 之间的关系,展示两者如何相等。

给定矩阵

假设我们有一个 3×3 矩阵:

A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}

3.2.1 计算 Frobenius 范数

首先,我们计算矩阵 A的 Frobenius 范数的平方

\|A\|_F^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2

我们逐项计算:

\|A\|_F^2 = 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 = 285

所以,矩阵 A的 Frobenius 范数的平方 为 285。

3.2.2 计算迹形式

接下来,我们计算 A^T A并求其迹:

3.2.3 计算 A^T

首先,计算矩阵 A的转置:

A^T = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}

3.2.4 计算 A^T A

然后计算A^T A

A^T A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}

我们逐项计算矩阵乘积:

A^T A = \begin{bmatrix} 1 \times 1 + 4 \times 4 + 7 \times 7 & 1 \times 2 + 4 \times 5 + 7 \times 8 & 1 \times 3 + 4 \times 6 + 7 \times 9 \\ 2 \times 1 + 5 \times 4 + 8 \times 7 & 2 \times 2 + 5 \times 5 + 8 \times 8 & 2 \times 3 + 5 \times 6 + 8 \times 9 \\ 3 \times 1 + 6 \times 4 + 9 \times 7 & 3 \times 2 + 6 \times 5 + 9 \times 8 & 3 \times 3 + 6 \times 6 + 9 \times 9 \end{bmatrix}

计算得到:

A^T A = \begin{bmatrix} 66 & 78 & 90 \\ 78 & 93 & 108 \\ 90 & 108 & 126 \end{bmatrix}

3.2.5 计算迹 \text{Tr}(A^T A)

迹是矩阵对角线元素的和,因此我们计算 A^T A的迹:

\text{Tr}(A^T A) = 66 + 93 + 126 = 285

3.2.6 对比结果

  • Frobenius 范数的平方\|A\|_F^2 = 285
  • 迹的形式\text{Tr}(A^T A) = 285

两者的结果相等,验证了 Frobenius 范数的平方 可以通过矩阵 A^T A 来表示。

4. 总结

  • Frobenius 范数描述的是矩阵中所有元素的平方和的平方根,用于衡量矩阵的整体大小。
  • 迹(Trace)是一个矩阵对角线元素的和。
  • Frobenius 范数的平方可以通过矩阵A^T A的迹来表示,即:\|A\|_F^2 = \text{Tr}(A^T A)
  • 这个关系在数学分析中非常有用,因为通过迹的形式,我们可以简化很多涉及矩阵的运算和推导过程,例如在矩阵微分或优化问题中。

这个关系帮助我们理解,矩阵的整体大小不仅可以通过直接计算每个元素的平方和来得出,也可以通过矩阵与其转置相乘的迹来得到,这两种方式在不同的数学问题中提供了不同的方便性和直观性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值