Title: 奇异值分解之 Frobenious-范数下低秩近似的证明
本篇博客接着之前博客 “ 奇异值分解的常用结论” 留下的问题 (Frobenious-范数下低秩近似) 继续进行.
相关博文介绍
- 奇异值分解之 Courant-Fischer 定理及其变体
- 奇异值分解之 Frobenious-范数下低秩近似
1. Low-Rank Approximation
Low-Rank Approximation
(Eckart-Young-Mirsky) For either the 2-norm ∥ ⋅ ∥ 2 \|\cdot\|_2 ∥⋅∥2 or the Frobenious norm ∥ ⋅ ∥ F \|\cdot\|_F ∥⋅∥F
∥ A − A k ∥ ≤ ∥ A − B ∥ \|\mathbf{A}−\mathbf{A}_k\|≤\|\mathbf{A}−\mathbf{B}\| ∥A−Ak∥≤∥A−B∥
for all rank- k k k matrices B \mathbf{B} B. Furthermore,
{ ∥ A − A k ∥ 2 = σ k + 1 ∥ A − A k ∥ F = ( ∑ i = k + 1 r σ i 2 ) 1 2 \left\{ {\begin{array}{l} \|\mathbf{A}−\mathbf{A}_k\|_2 =\sigma_{k+1} \\ \|\mathbf{A}−\mathbf{A}_k\|_F ={\left(\sum_{i=k+1}^{r} \sigma_i^2\right)^{\frac{1}{2}}} \end{array} } \right. {∥A−Ak∥2=σk+1∥A−Ak∥F=(∑i=k+1rσi2)21
其中 2-范数情况已经在 “奇异值分解之常用结论” 中完成证明, 这里开始 Frobenious-范数情况的证明.
2. Weyl’s inequality
[Weyl’s inequality] Let X , Y ∈ M m , n \mathbf{X}, \mathbf{Y}\in \mathbf{M}_{m, n} X,Y∈Mm,n be given and let q = min { m , n } q = \min\{m,n\} q=min{m,n}. The following inequality holds for the decreasingly ordered singular values of X \mathbf{X} X, Y \mathbf{Y} Y, and X + Y \mathbf{X}+ \mathbf{Y} X+Y:
σ i + j − 1 ( X + Y ) ≤ σ i ( X ) + σ j ( Y ) \sigma_{i+j-1} (\mathbf{X} + \mathbf{Y}) \leq \sigma_i(\mathbf{X})+ \sigma_j(\mathbf{Y}) σi+j−1(X+Y)≤σi(X)+σj(Y)
for 1 ≤ i , j ≤ q 1 \leq i,j \leq q 1≤i,j≤q and i + j ≤ q + 1 i+j \leq q+1 i+j≤q+1.
上一篇博客 “奇异值分解之 Weyl 不等式及其变体” 中已经整理并证明了两种形式的 Weyl 不等式, 包括上述奇异值形式.
3. Frobenious-范数下低秩近似的证明
Proof[1]
对 Weyl 不等式进行变量替换
X
=
A
−
B
Y
=
B
j
−
1
=
k
(1)
\begin{aligned} \mathbf{X} &= \mathbf{A} - \mathbf{B}\\ \mathbf{Y} &= \mathbf{B}\\ j-1 &= k \end{aligned} \tag{1}
XYj−1=A−B=B=k(1)
已知 KaTeX parse error: Undefined control sequence: \rank at position 1: \̲r̲a̲n̲k̲(\mathbf{B}) = …, 故有
σ
i
(
B
)
=
0
,
for
i
≥
k
+
1
(2)
\sigma_{i}(\mathbf{B}) = 0, \quad \text{for}\;\; i \geq k+1 \tag{2}
σi(B)=0,fori≥k+1(2)
代入 Weyl 不等式得到
σ
i
+
k
(
A
)
≤
σ
i
(
A
−
B
)
+
σ
k
+
1
(
B
)
=
σ
i
(
A
−
B
)
(3)
\sigma_{i+k} (\mathbf{A}) \leq \sigma_i(\mathbf{A}-\mathbf{B})+ \sigma_{k+1}(\mathbf{B}) = \sigma_i(\mathbf{A}-\mathbf{B}) \tag{3}
σi+k(A)≤σi(A−B)+σk+1(B)=σi(A−B)(3)
截断的奇异值分解 (truncated SVD)
A
k
≜
∑
i
=
1
r
a
n
k
(
A
)
σ
i
u
i
v
i
T
=
∑
i
=
1
min
{
m
,
n
}
σ
i
u
i
v
i
T
(4)
{\mathbf{A}}_k \triangleq \sum_{i=1}^{{\rm rank}({\mathbf{A}})} {\sigma}_i \mathbf{u}_i \mathbf{v}_i^{\small\rm T} = \sum_{i=1}^{\min\{m,n\}} {\sigma}_i \mathbf{u}_i \mathbf{v}_i^{\small\rm T} \tag{4}
Ak≜i=1∑rank(A)σiuiviT=i=1∑min{m,n}σiuiviT(4)
其中
σ
p
=
0
\sigma_{p} = 0
σp=0, 当 KaTeX parse error: Undefined control sequence: \rank at position 1: \̲r̲a̲n̲k̲({\mathbf{A}}) ….
由奇异值分解的范数性质
∥
A
−
A
k
∥
F
2
=
∑
i
=
k
+
1
r
a
n
k
(
A
)
σ
i
(
A
)
2
=
∑
i
=
1
r
a
n
k
(
A
)
−
k
σ
i
+
k
(
A
)
2
≤
∑
i
=
1
r
a
n
k
(
A
)
−
k
σ
i
(
A
−
B
)
2
≤
∑
i
=
1
min
{
m
,
n
}
σ
i
(
A
−
B
)
2
=
∥
A
−
B
∥
F
2
(5)
\begin{aligned} \| \mathbf{A} - {\mathbf{A}}_k \|_{F}^2 & = \sum_{i=k+1}^{{\rm rank}({\mathbf{A}})} \sigma_i(\mathbf{A})^2\\ & = \sum_{i=1}^{{\rm rank}({\mathbf{A}})-k} \sigma_{i+k}(\mathbf{A})^2\\ & \leq \sum_{i=1}^{{\rm rank}({\mathbf{A}})-k} \sigma_{i}(\mathbf{A}-\mathbf{B})^2\\ & \leq \sum_{i=1}^{\min\{m,n\}} \sigma_{i}(\mathbf{A}-\mathbf{B})^2\\ &= \|\mathbf{A}-\mathbf{B}\|_{F}^2 \end{aligned} \tag{5}
∥A−Ak∥F2=i=k+1∑rank(A)σi(A)2=i=1∑rank(A)−kσi+k(A)2≤i=1∑rank(A)−kσi(A−B)2≤i=1∑min{m,n}σi(A−B)2=∥A−B∥F2(5)
证明完毕.
这样就补全了 奇异值分解之常用结论 中留下的问题.
参考文献
[1] Scribe(s): Joss Rakotobe, Haoyu Zhang, Instructor: Guillaume Rabusseau, “IFT 6760A - Lecture 5 SVD, Matrix Norms and Low Rank Approximation Theorem”, https://www-labs.iro.umontreal.ca/~grabus/courses/ift6760_W20_files/lecture-5.pdf