奇异值分解之 Frobenious-范数下低秩近似的证明

Title: 奇异值分解之 Frobenious-范数下低秩近似的证明


本篇博客接着之前博客 “ 奇异值分解的常用结论” 留下的问题 (Frobenious-范数下低秩近似) 继续进行.

相关博文介绍

- 奇异值分解之常用结论

- 奇异值分解之 Courant-Fischer 定理及其变体

- 奇异值分解之 Weyl 不等式及其变体

- 奇异值分解之 Frobenious-范数下低秩近似

1. Low-Rank Approximation

Low-Rank Approximation

(Eckart-Young-Mirsky) For either the 2-norm ∥ ⋅ ∥ 2 \|\cdot\|_2 2 or the Frobenious norm ∥ ⋅ ∥ F \|\cdot\|_F F
∥ A − A k ∥ ≤ ∥ A − B ∥ \|\mathbf{A}−\mathbf{A}_k\|≤\|\mathbf{A}−\mathbf{B}\| AAkAB
for all rank- k k k matrices B \mathbf{B} B. Furthermore,
{ ∥ A − A k ∥ 2 = σ k + 1 ∥ A − A k ∥ F = ( ∑ i = k + 1 r σ i 2 ) 1 2 \left\{ {\begin{array}{l} \|\mathbf{A}−\mathbf{A}_k\|_2 =\sigma_{k+1} \\ \|\mathbf{A}−\mathbf{A}_k\|_F ={\left(\sum_{i=k+1}^{r} \sigma_i^2\right)^{\frac{1}{2}}} \end{array} } \right. {AAk2=σk+1AAkF=(i=k+1rσi2)21

其中 2-范数情况已经在 “奇异值分解之常用结论” 中完成证明, 这里开始 Frobenious-范数情况的证明.


2. Weyl’s inequality

[Weyl’s inequality] Let X , Y ∈ M m , n \mathbf{X}, \mathbf{Y}\in \mathbf{M}_{m, n} X,YMm,n be given and let q = min ⁡ { m , n } q = \min\{m,n\} q=min{m,n}. The following inequality holds for the decreasingly ordered singular values of X \mathbf{X} X, Y \mathbf{Y} Y, and X + Y \mathbf{X}+ \mathbf{Y} X+Y:
σ i + j − 1 ( X + Y ) ≤ σ i ( X ) + σ j ( Y ) \sigma_{i+j-1} (\mathbf{X} + \mathbf{Y}) \leq \sigma_i(\mathbf{X})+ \sigma_j(\mathbf{Y}) σi+j1(X+Y)σi(X)+σj(Y)
for 1 ≤ i , j ≤ q 1 \leq i,j \leq q 1i,jq and i + j ≤ q + 1 i+j \leq q+1 i+jq+1.

上一篇博客 “奇异值分解之 Weyl 不等式及其变体” 中已经整理并证明了两种形式的 Weyl 不等式, 包括上述奇异值形式.

3. Frobenious-范数下低秩近似的证明

Proof[1]

对 Weyl 不等式进行变量替换
X = A − B Y = B j − 1 = k (1) \begin{aligned} \mathbf{X} &= \mathbf{A} - \mathbf{B}\\ \mathbf{Y} &= \mathbf{B}\\ j-1 &= k \end{aligned} \tag{1} XYj1=AB=B=k(1)
已知 KaTeX parse error: Undefined control sequence: \rank at position 1: \̲r̲a̲n̲k̲(\mathbf{B}) = …, 故有
σ i ( B ) = 0 , for      i ≥ k + 1 (2) \sigma_{i}(\mathbf{B}) = 0, \quad \text{for}\;\; i \geq k+1 \tag{2} σi(B)=0,forik+1(2)
代入 Weyl 不等式得到
σ i + k ( A ) ≤ σ i ( A − B ) + σ k + 1 ( B ) = σ i ( A − B ) (3) \sigma_{i+k} (\mathbf{A}) \leq \sigma_i(\mathbf{A}-\mathbf{B})+ \sigma_{k+1}(\mathbf{B}) = \sigma_i(\mathbf{A}-\mathbf{B}) \tag{3} σi+k(A)σi(AB)+σk+1(B)=σi(AB)(3)

截断的奇异值分解 (truncated SVD)
A k ≜ ∑ i = 1 r a n k ( A ) σ i u i v i T = ∑ i = 1 min ⁡ { m , n } σ i u i v i T (4) {\mathbf{A}}_k \triangleq \sum_{i=1}^{{\rm rank}({\mathbf{A}})} {\sigma}_i \mathbf{u}_i \mathbf{v}_i^{\small\rm T} = \sum_{i=1}^{\min\{m,n\}} {\sigma}_i \mathbf{u}_i \mathbf{v}_i^{\small\rm T} \tag{4} Aki=1rank(A)σiuiviT=i=1min{m,n}σiuiviT(4)
其中 σ p = 0 \sigma_{p} = 0 σp=0, 当 KaTeX parse error: Undefined control sequence: \rank at position 1: \̲r̲a̲n̲k̲({\mathbf{A}}) ….

奇异值分解的范数性质
∥ A − A k ∥ F 2 = ∑ i = k + 1 r a n k ( A ) σ i ( A ) 2 = ∑ i = 1 r a n k ( A ) − k σ i + k ( A ) 2 ≤ ∑ i = 1 r a n k ( A ) − k σ i ( A − B ) 2 ≤ ∑ i = 1 min ⁡ { m , n } σ i ( A − B ) 2 = ∥ A − B ∥ F 2 (5) \begin{aligned} \| \mathbf{A} - {\mathbf{A}}_k \|_{F}^2 & = \sum_{i=k+1}^{{\rm rank}({\mathbf{A}})} \sigma_i(\mathbf{A})^2\\ & = \sum_{i=1}^{{\rm rank}({\mathbf{A}})-k} \sigma_{i+k}(\mathbf{A})^2\\ & \leq \sum_{i=1}^{{\rm rank}({\mathbf{A}})-k} \sigma_{i}(\mathbf{A}-\mathbf{B})^2\\ & \leq \sum_{i=1}^{\min\{m,n\}} \sigma_{i}(\mathbf{A}-\mathbf{B})^2\\ &= \|\mathbf{A}-\mathbf{B}\|_{F}^2 \end{aligned} \tag{5} AAkF2=i=k+1rank(A)σi(A)2=i=1rank(A)kσi+k(A)2i=1rank(A)kσi(AB)2i=1min{m,n}σi(AB)2=ABF2(5)
证明完毕.

这样就补全了 奇异值分解之常用结论 中留下的问题.

参考文献

[1] Scribe(s): Joss Rakotobe, Haoyu Zhang, Instructor: Guillaume Rabusseau, “IFT 6760A - Lecture 5 SVD, Matrix Norms and Low Rank Approximation Theorem”, https://www-labs.iro.umontreal.ca/~grabus/courses/ift6760_W20_files/lecture-5.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值