ETL、DW、OLAP、DB、OLTP之间的关系

核心关系总结

OLTP → DB → ETL → DW → OLAP 构成企业数据从 实时事务分析决策 的完整链路。各环节分工明确,协作流程如下:

  1. OLTP 处理实时事务,生成原始数据存储于 DB(如订单、交易记录)。
  2. ETLDB 和其他数据源抽取数据,清洗转换后加载到 DW
  3. DW 整合历史数据,为 OLAP 提供分析友好的存储结构。
  4. OLAP 基于 DW 执行多维分析,生成可视化报告或业务洞察。

类比

  • OLTP 像收银员(处理交易),DB 像收银台抽屉(暂存现金),ETL 像财务记账员(整理账目),DW 像档案室(长期存储账本),OLAP 像财务分析师(研究收支趋势)。

各环节详解与协作关系

术语定义核心角色协作关系
OLTP联机事务处理(Online Transaction Processing),支持高并发实时业务操作(如支付、下单)。生成原始业务数据,确保事务ACID特性。数据源头,持续向 DB 写入实时数据。
DB数据库(Database),通常指OLTP数据库(如MySQL、Oracle),存储当前业务状态数据。短期存储事务数据,支撑日常操作。接收 OLTP 产生的数据,并为 ETL 提供数据抽取来源。
ETL抽取、转换、加载(Extract, Transform, Load),构建数据管道。清洗整合数据,为分析准备“原材料”。DB 和其他源抽取数据,处理后加载到 DW
DW数据仓库(Data Warehouse),整合历史数据,优化分析查询。长期存储结构化历史数据。存储 ETL 处理后的数据,作为 OLAP 的输入源。
OLAP联机分析处理(Online Analytical Processing),支持多维数据分析。生成业务洞察,驱动决策。基于 DW 执行复杂查询,输出可视化报表或机器学习数据集。

数据流示意图

OLTP系统 → DB(实时事务数据)  
                ↓  
                ETL(清洗、整合、转换)  
                ↓  
                DW(历史数据存储)  
                ↓  
                OLAP(多维分析)  
                ↓  
             BI工具/决策支持  

实际场景示例:电商平台

  1. OLTP & DB

    • 用户下单 → OLTP系统处理订单(扣库存、生成订单号)。
    • 数据存储:订单详情(订单ID、金额、时间)写入MySQL数据库。
  2. ETL

    • 每日凌晨从MySQL抽取订单数据,从日志系统抽取用户点击行为数据。
    • 转换:计算用户购买转化率,关联订单与商品信息。
    • 加载:将处理后的数据写入Amazon Redshift(DW)。
  3. DW

    • 存储结构:星型模型,事实表存储订单金额、数量,维度表关联时间、用户、商品。
  4. OLAP

    • 分析“2023年Q3不同地区用户的复购率趋势”。
    • 通过Power BI下钻查看某地区复购率低的商品品类。

关键协作点与对比

对比维度OLTP + DBETL + DW + OLAP
目标实时处理业务操作历史数据分析与决策支持
数据时效性当前数据(秒级延迟)T+1或周期性更新(小时/天级延迟)
读写模式高频写入(INSERT/UPDATE)批量写入(ETL)、复杂查询(SELECT)
数据结构高度规范化(3NF范式)反规范化(星型/雪花模型)
典型工具MySQL、PostgreSQL、OracleInformatica(ETL)、Snowflake(DW)、Power BI(OLAP)

常见技术组合

  1. 传统架构
    • OLTP:Oracle DB → ETL:Informatica → DW:Teradata → OLAP:IBM Cognos
  2. 云原生架构
    • OLTP:AWS RDS(MySQL) → ETL:AWS Glue → DW:Snowflake → OLAP:Looker
  3. 实时分析架构(Lambda架构):
    • 批处理层:Hadoop + Hive(DW)
    • 速度层:Kafka + Flink(实时ETL)
    • 服务层:Presto(OLAP)

挑战与解决方案

挑战解决方案
OLTP与DW数据不一致通过ETL日志监控和一致性校验(如 checksum 对比)。
DW查询性能瓶颈使用列式存储(如 Redshift)、预聚合表或物化视图。
实时分析需求引入流处理技术(如 Kafka + Flink)构建实时数仓。
数据孤岛通过ETL整合多源数据(CRM、ERP、日志系统)到统一DW。

总结

  • OLTP + DB 是业务的“心脏”,支撑实时运作;
  • ETL 是数据流动的“血管”,连接事务与分析;
  • DW + OLAP 是企业的“大脑”,驱动智能决策。
  • 协作价值:从 OLTP 产生数据ETL 治理数据DW 存储数据OLAP 消费数据,形成数据驱动闭环。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值