文章目录
多线程:
使用线程池
Java语言虽然内置了多线程支持,启动一个新线程非常方便,但是,创建线程需要操作系统资源(线程资源,栈空间等),频繁创建和销毁大量线程需要消耗大量时间。
如果可以复用一组线程:
那么我们就可以把很多小任务让一组线程来执行,而不是一个任务对应一个新线程。这种能接收大量小任务并进行分发处理的就是线程池。
简单地说,线程池内部维护了若干个线程,没有任务的时候,这些线程都处于等待状态。如果有新任务,就分配一个空闲线程执行。如果所有线程都处于忙碌状态,新任务要么放入队列等待,要么增加一个新线程进行处理。
Java标准库提供了ExecutorService接口表示线程池,它的典型用法如下:
// 创建固定大小的线程池:
ExecutorService executor = Executors.newFixedThreadPool(3);
// 提交任务:
executor.submit(task1);
executor.submit(task2);
executor.submit(task3);
executor.submit(task4);
executor.submit(task5);
因为ExecutorService只是接口,Java标准库提供的几个常用实现类有:
FixedThreadPool:线程数固定的线程池;
CachedThreadPool:线程数根据任务动态调整的线程池;
SingleThreadExecutor:仅单线程执行的线程池。
创建这些线程池的方法都被封装到Executors这个类中。我们以FixedThreadPool为例,看看线程池的执行逻辑:
import java.util.concurrent.*;
public class Main {
public static void main(String[] args) {
// 创建一个固定大小的线程池:
ExecutorService es = Executors.newFixedThreadPool(4);
for (int i = 0; i < 6; i++) {
es.submit(new Task("" + i));
}
// 关闭线程池:
es.shutdown();
}
}
class Task implements Runnable {
private final String name;
public Task(String name) {
this.name = name;
}
@Override
public void run() {
System.out.println("start task " + name);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
}
System.out.println("end task " + name);
}
}
我们观察执行结果,一次性放入6个任务,由于线程池只有固定的4个线程,因此,前4个任务会同时执行,等到有线程空闲后,才会执行后面的两个任务。
线程池在程序结束的时候要关闭。使用shutdown()方法关闭线程池的时候,它会等待正在执行的任务先完成,然后再关闭。shutdownNow()会立刻停止正在执行的任务,awaitTermination()则会等待指定的时间让线程池关闭。
如果我们把线程池改为CachedThreadPool,由于这个线程池的实现会根据任务数量动态调整线程池的大小,所以6个任务可一次性全部同时执行。
如果我们想把线程池的大小限制在4~10个之间动态调整怎么办?我们查看Executors.newCachedThreadPool()方法的源码:
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
因此,想创建指定动态范围的线程池,可以这么写:
int min = 4;
int max = 10;
ExecutorService es = new ThreadPoolExecutor(min, max,
60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>());
ThreadPoolExecutor 中的 shutdown() 、 shutdownNow() 、 awaitTermination() 的用法和区别
Java并发编程中在使用到ThreadPoolExecutor时,对它的三个关闭方法(shutdown()、shutdownNow()、awaitTermination())的异同点如下:
shutdown()
将线程池状态置为SHUTDOWN,并不会立即停止:
停止接收外部submit的任务
内部正在跑的任务和队列里等待的任务,会执行完
等到第二步完成后,才真正停止
shutdownNow()
将线程池状态置为STOP。企图立即停止,事实上不一定:
跟shutdown()一样,先停止接收外部提交的任务
忽略队列里等待的任务
尝试将正在跑的任务interrupt中断
返回未执行的任务列表
它试图终止线程的方法是通过调用Thread.interrupt()方法来实现的,但是大家知道,这种方法的作用有限,如果线程中没有sleep 、wait、Condition、定时锁等应用, interrupt()方法是无法中断当前的线程的。所以,ShutdownNow()并不代表线程池就一定立即就能退出,它也可能必须要等待所有正在执行的任务都执行完成了才能退出。
但是大多数时候是能立即退出的
awaitTermination(long timeOut, TimeUnit unit)
当前线程阻塞,直到
等所有已提交的任务(包括正在跑的和队列中等待的)执行完
或者等超时时间到
或者线程被中断,抛出InterruptedException
然后返回true(shutdown请求后所有任务执行完毕)或false(已超时)
shuntdown()和awaitTermination()效果差不多,方法执行之后,都要等到提交的任务全部执行完才停。
此处小结:
优雅的关闭,用shutdown()
想立马关闭,并得到未执行任务列表,用shutdownNow()
优雅的关闭,并允许关闭声明后新任务能提交,用awaitTermination()
ScheduledThreadPool
还有一种任务,需要定期反复执行,例如,每秒刷新证券价格。这种任务本身固定,需要反复执行的,可以使用ScheduledThreadPool。放入ScheduledThreadPool的任务可以定期反复执行。
创建一个ScheduledThreadPool仍然是通过Executors类:
ScheduledExecutorService ses = Executors.newScheduledThreadPool(4);
我们可以提交一次性任务,它会在指定延迟后只执行一次:
// 1秒后执行一次性任务:
ses.schedule(new Task(“one-time”), 1, TimeUnit.SECONDS);
如果任务以固定的每3秒执行,我们可以这样写:
// 2秒后开始执行定时任务,每3秒执行:
ses.scheduleAtFixedRate(new Task(“fixed-rate”), 2, 3, TimeUnit.SECONDS);
如果任务以固定的3秒为间隔执行,我们可以这样写:
// 2秒后开始执行定时任务,以3秒为间隔执行:
ses.scheduleWithFixedDelay(new Task(“fixed-delay”), 2, 3, TimeUnit.SECONDS);
注意FixedRate和FixedDelay的区别。FixedRate是指任务总是以固定时间间隔触发,不管任务执行多长时间.而FixedDelay是指,上一次任务执行完毕后,等待固定的时间间隔,再执行下一次任务.
因此,使用ScheduledThreadPool时,我们要根据需要选择执行一次、FixedRate执行还是FixedDelay执行。
细心的人还可以思考下面的问题:
在FixedRate模式下,假设每秒触发,如果某次任务执行时间超过1秒,后续任务会不会并发执行?
如果任务抛出了异常,后续任务是否继续执行?
Java标准库还提供了一个java.util.Timer类,这个类也可以定期执行任务,但是,一个Timer会对应一个Thread,所以,一个Timer只能定期执行一个任务,多个定时任务必须启动多个Timer,而一个ScheduledThreadPool就可以调度多个定时任务,所以,我们完全可以用ScheduledThreadPool取代旧的Timer。
使用Future
在执行多个任务的时候,使用Java标准库提供的线程池是非常方便的。我们提交的任务只需要实现Runnable接口,就可以让线程池去执行:
class Task implements Runnable {
public String result;
public void run() {
this.result = longTimeCalculation();
}
}
Runnable接口有个问题,它的方法没有返回值。如果任务需要一个返回结果,那么只能保存到变量,还要提供额外的方法读取,非常不便。所以,Java标准库还提供了一个Callable接口,和Runnable接口比,它多了一个返回值:
class Task implements Callable<String> {
public String call() throws Exception {
return longTimeCalculation();
}
}
并且Callable接口是一个泛型接口,可以返回指定类型的结果。
现在的问题是,如何获得异步执行的结果?
如果仔细看ExecutorService.submit()方法,可以看到,它返回了一个Future类型,一个Future类型的实例代表一个未来能获取结果的对象:
ExecutorService executor = Executors.newFixedThreadPool(4);
// 定义任务:
Callable<String> task = new Task();
// 提交任务并获得Future:
Future<String> future = executor.submit(task);
// 从Future获取异步执行返回的结果:
String result = future.get(); // 可能阻塞
当我们提交一个Callable任务后,我们会同时获得一个Future对象,然后,我们在主线程某个时刻调用Future对象的get()方法,就可以获得异步执行的结果。在调用get()时,如果异步任务已经完成,我们就直接获得结果。如果异步任务还没有完成,那么get()会阻塞,直到任务完成后才返回结果。
一个Future接口表示一个未来可能会返回的结果,它定义的方法有:
get():获取结果(可能会等待)
get(long timeout, TimeUnit unit):获取结果,但只等待指定的时间;
cancel(boolean mayInterruptIfRunning):取消当前任务;
isDone():判断任务是否已完成。
小结
对线程池提交一个Callable任务,可以获得一个Future对象;
可以用Future在将来某个时刻获取结果。
使用CompletableFuture
使用Future获得异步执行结果时,要么调用阻塞方法get(),要么轮询看isDone()是否为true,这两种方法都不是很好,因为主线程也会被迫等待。
从Java 8开始引入了CompletableFuture,它针对Future做了改进,可以传入回调对象,当异步任务完成或者发生异常时,自动调用回调对象的回调方法。
我们以获取股票价格为例,看看如何使用CompletableFuture:
public class Main {
public static void main(String[] args) throws Exception {
// 创建异步执行任务:
CompletableFuture<Double> cf = CompletableFuture.supplyAsync(Main::fetchPrice);
// 如果执行成功:
cf.thenAccept((result) -> {
System.out.println("price: " + result);
});
// 如果执行异常:
cf.exceptionally((e) -> {
e.printStackTrace();
return null;
});
// 主线程不要立刻结束,否则CompletableFuture默认使用的线程池会立刻关闭:
Thread.sleep(200);
}
static Double fetchPrice() {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
}
if (Math.random() < 0.3) {
throw new RuntimeException("fetch price failed!");
}
return 5 + Math.random() * 20;
}
}
建一个CompletableFuture是通过CompletableFuture.supplyAsync()实现的,它需要一个实现了Supplier接口的对象:
public interface Supplier {
T get();
}
这里我们用lambda语法简化了一下,直接传入Main::fetchPrice,因为Main.fetchPrice()静态方法的签名符合Supplier接口的定义(除了方法名外)。
紧接着,CompletableFuture已经被提交给默认的线程池执行了,我们需要定义的是CompletableFuture完成时和异常时需要回调的实例。完成时,CompletableFuture会调用Consumer对象:
public interface Consumer {
void accept(T t);
}
异常时,CompletableFuture会调用Function对象:
public interface Function<T, R> {
R apply(T t);
}
这里我们都用lambda语法简化了代码。
可见CompletableFuture的优点是:
异步任务结束时,会自动回调某个对象的方法;
异步任务出错时,会自动回调某个对象的方法;
主线程设置好回调后,不再关心异步任务的执行。
如果只是实现了异步回调机制,我们还看不出CompletableFuture相比Future的优势。CompletableFuture更强大的功能是,多个CompletableFuture可以串行执行,例如,定义两个CompletableFuture,第一个CompletableFuture根据证券名称查询证券代码,第二个CompletableFuture根据证券代码查询证券价格,这两个CompletableFuture实现串行操作如下:
public class Main {
public static void main(String[] args) throws Exception {
// 第一个任务:
CompletableFuture<String> cfQuery = CompletableFuture.supplyAsync(() -> {
return queryCode("中国石油");
});
// cfQuery成功后继续执行下一个任务:
CompletableFuture<Double> cfFetch = cfQuery.thenApplyAsync((code) -> {
return fetchPrice(code);
});
// cfFetch成功后打印结果:
cfFetch.thenAccept((result) -> {
System.out.println("price: " + result);
});
// 主线程不要立刻结束,否则CompletableFuture默认使用的线程池会立刻关闭:
Thread.sleep(2000);
}
static String queryCode(String name) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
}
return "601857";
}
static Double fetchPrice(String code) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
}
return 5 + Math.random() * 20;
}
}
除了串行执行外,多个CompletableFuture还可以并行执行。例如,我们考虑这样的场景:
同时从新浪和网易查询证券代码,只要任意一个返回结果,就进行下一步查询价格,查询价格也同时从新浪和网易查询,只要任意一个返回结果,就完成操作:
public class Main {
public static void main(String[] args) throws Exception {
// 两个CompletableFuture执行异步查询:
CompletableFuture<String> cfQueryFromSina = CompletableFuture.supplyAsync(() -> {
return queryCode("中国石油", "https://finance.sina.com.cn/code/");
});
CompletableFuture<String> cfQueryFrom163 = CompletableFuture.supplyAsync(() -> {
return queryCode("中国石油", "https://money.163.com/code/");
});
// 用anyOf合并为一个新的CompletableFuture:
CompletableFuture<Object> cfQuery = CompletableFuture.anyOf(cfQueryFromSina, cfQueryFrom163);
// 两个CompletableFuture执行异步查询:
CompletableFuture<Double> cfFetchFromSina = cfQuery.thenApplyAsync((code) -> {
return fetchPrice((String) code, "https://finance.sina.com.cn/price/");
});
CompletableFuture<Double> cfFetchFrom163 = cfQuery.thenApplyAsync((code) -> {
return fetchPrice((String) code, "https://money.163.com/price/");
});
// 用anyOf合并为一个新的CompletableFuture:
CompletableFuture<Object> cfFetch = CompletableFuture.anyOf(cfFetchFromSina, cfFetchFrom163);
// 最终结果:
cfFetch.thenAccept((result) -> {
System.out.println("price: " + result);
});
// 主线程不要立刻结束,否则CompletableFuture默认使用的线程池会立刻关闭:
Thread.sleep(200);
}
static String queryCode(String name, String url) {
System.out.println("query code from " + url + "...");
try {
Thread.sleep((long) (Math.random() * 100));
} catch (InterruptedException e) {
}
return "601857";
}
static Double fetchPrice(String code, String url) {
System.out.println("query price from " + url + "...");
try {
Thread.sleep((long) (Math.random() * 100));
} catch (InterruptedException e) {
}
return 5 + Math.random() * 20;
}
}
上述逻辑实现的异步查询规则实际上是:
除了anyOf()可以实现“任意个CompletableFuture只要一个成功”,allOf()可以实现“所有CompletableFuture都必须成功”,这些组合操作可以实现非常复杂的异步流程控制。
最后我们注意CompletableFuture的命名规则:
xxx():表示该方法将继续在已有的线程中执行;
xxxAsync():表示将异步在线程池中执行。
使用ForkJoin(新的线程池)
Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行。
我们举个例子:如果要计算一个超大数组的和,最简单的做法是用一个循环在一个线程内完成:
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴
还有一种方法,可以把数组拆成两部分,分别计算,最后加起来就是最终结果,这样可以用两个线程并行执行:
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘
如果拆成两部分还是很大,我们还可以继续拆,用4个线程并行执行:
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
┌─┬─┬─┬─┬─┬─┐
└─┴─┴─┴─┴─┴─┘
这就是Fork/Join任务的原理:判断一个任务是否足够小,如果是,直接计算,否则,就分拆成几个小任务分别计算。这个过程可以反复“裂变”成一系列小任务。
我们来看如何使用Fork/Join对大数据进行并行求和:
public class Main {
public static void main(String[] args) throws Exception {
// 创建2000个随机数组成的数组:
long[] array = new long[2000];
long expectedSum = 0;
for (int i = 0; i < array.length; i++) {
array[i] = random();
expectedSum += array[i];
}
System.out.println("Expected sum: " + expectedSum);
// fork/join:
ForkJoinTask<Long> task = new SumTask(array, 0, array.length);
long startTime = System.currentTimeMillis();
Long result = ForkJoinPool.commonPool().invoke(task);
long endTime = System.currentTimeMillis();
System.out.println("Fork/join sum: " + result + " in " + (endTime - startTime) + " ms.");
}
static Random random = new Random(0);
static long random() {
return random.nextInt(10000);
}
}
class SumTask extends RecursiveTask<Long> {
static final int THRESHOLD = 500;
long[] array;
int start;
int end;
SumTask(long[] array, int start, int end) {
this.array = array;
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if (end - start <= THRESHOLD) {
// 如果任务足够小,直接计算:
long sum = 0;
for (int i = start; i < end; i++) {
sum += this.array[i];
// 故意放慢计算速度:
try {
Thread.sleep(1);
} catch (InterruptedException e) {
}
}
return sum;
}
// 任务太大,一分为二:
int middle = (end + start) / 2;
System.out.println(String.format("split %d~%d ==> %d~%d, %d~%d", start, end, start, middle, middle, end));
SumTask subtask1 = new SumTask(this.array, start, middle);
SumTask subtask2 = new SumTask(this.array, middle, end);
invokeAll(subtask1, subtask2);
Long subresult1 = subtask1.join();
Long subresult2 = subtask2.join();
Long result = subresult1 + subresult2;
System.out.println("result = " + subresult1 + " + " + subresult2 + " ==> " + result);
return result;
}
}
观察上述代码的执行过程,一个大的计算任务02000首先分裂为两个小任务01000和10002000,这两个小任务仍然太大,继续分裂为更小的0500,5001000,10001500,1500~2000,最后,计算结果被依次合并,得到最终结果。
因此,核心代码SumTask继承自RecursiveTask,在compute()方法中,关键是如何“分裂”出子任务并且提交子任务:
class SumTask extends RecursiveTask<Long> {
protected Long compute() {
// “分裂”子任务:
SumTask subtask1 = new SumTask(...);
SumTask subtask2 = new SumTask(...);
// invokeAll会并行运行两个子任务:
invokeAll(subtask1, subtask2);
// 获得子任务的结果:
Long subresult1 = subtask1.join();
Long subresult2 = subtask2.join();
// 汇总结果:
return subresult1 + subresult2;
}
}
Fork/Join线程池在Java标准库中就有应用。Java标准库提供的java.util.Arrays.parallelSort(array)可以进行并行排序,它的原理就是内部通过Fork/Join对大数组分拆进行并行排序,在多核CPU上就可以大大提高排序的速度。
使用ThreadLocal
多线程是Java实现多任务的基础,Thread对象代表一个线程,我们可以在代码中调用Thread.currentThread()获取当前线程。例如,打印日志时,可以同时打印出当前线程的名字:
public class Main {
public static void main(String[] args) throws Exception {
log("start main...");
new Thread(() -> {
log("run task...");
}).start();
new Thread(() -> {
log("print...");
}).start();
log("end main.");
}
static void log(String s) {
System.out.println(Thread.currentThread().getName() + ": " + s);
}
}
对于多任务,Java标准库提供的线程池可以方便地执行这些任务,同时复用线程。Web应用程序就是典型的多任务应用,每个用户请求页面时,我们都会创建一个任务,类似:
public void process(User user) {
checkPermission();
doWork();
saveStatus();
sendResponse();
}
然后,通过线程池去执行这些任务。
观察process()方法,它内部需要调用若干其他方法,同时,我们遇到一个问题:如何在一个线程内传递状态?
process()方法需要传递的状态就是User实例。有的童鞋会想,简单地传入User就可以了:
public void process(User user) {
checkPermission(user);
doWork(user);
saveStatus(user);
sendResponse(user);
}
但是往往一个方法又会调用其他很多方法,这样会导致User传递到所有地方:
void doWork(User user) {
queryStatus(user);
checkStatus();
setNewStatus(user);
log();
}
这种在一个线程中,横跨若干方法调用,需要传递的对象,我们通常称之为上下文(Context),它是一种状态,可以是用户身份、任务信息等。
给每个方法增加一个context参数非常麻烦,而且有些时候,如果调用链有无法修改源码的第三方库,User对象就传不进去了。
Java标准库提供了一个特殊的ThreadLocal,它可以在一个线程中传递同一个对象。
ThreadLocal实例通常总是以静态字段初始化如下:
static ThreadLocal threadLocalUser = new ThreadLocal<>();
它的典型使用方式如下:
void processUser(user) {
try {
threadLocalUser.set(user);
step1();
step2();
} finally {
threadLocalUser.remove();
}
}
通过设置一个User实例关联到ThreadLocal中,在移除之前,所有方法都可以随时获取到该User实例:
void step1() {
User u = threadLocalUser.get();
log();
printUser();
}
void log() {
User u = threadLocalUser.get();
println(u.name);
}
void step2() {
User u = threadLocalUser.get();
checkUser(u.id);
}
注意到普通的方法调用一定是同一个线程执行的,所以,step1()、step2()以及log()方法内,threadLocalUser.get()获取的User对象是同一个实例。
实际上,可以把ThreadLocal看成一个全局Map<Thread, Object>:每个线程获取ThreadLocal变量时,总是使用Thread自身作为key:
Object threadLocalValue = threadLocalMap.get(Thread.currentThread());
因此,ThreadLocal相当于给每个线程都开辟了一个独立的存储空间,各个线程的ThreadLocal关联的实例互不干扰。
最后,特别注意ThreadLocal一定要在finally中清除:
try {
threadLocalUser.set(user);
...
} finally {
threadLocalUser.remove();
}
这是因为当前线程执行完相关代码后,很可能会被重新放入线程池中,如果ThreadLocal没有被清除,该线程执行其他代码时,会把上一次的状态带进去。
为了保证能释放ThreadLocal关联的实例,我们可以通过AutoCloseable接口配合try (resource) {…}结构,让编译器自动为我们关闭。例如,一个保存了当前用户名的ThreadLocal可以封装为一个UserContext对象:
public class UserContext implements AutoCloseable {
static final ThreadLocal<String> ctx = new ThreadLocal<>();
public UserContext(String user) {
ctx.set(user);
}
public static String currentUser() {
return ctx.get();
}
@Override
public void close() {
ctx.remove();
}
}
使用的时候,我们借助try (resource) {…}结构,可以这么写:
try (var ctx = new UserContext("Bob")) {
// 可任意调用UserContext.currentUser():
String currentUser = UserContext.currentUser();
} // 在此自动调用UserContext.close()方法释放ThreadLocal关联对象
这样就在UserContext中完全封装了ThreadLocal,外部代码在try (resource) {…}内部可以随时调用UserContext.currentUser()获取当前线程绑定的用户名。
小结
ThreadLocal表示线程的“局部变量”,它确保每个线程的ThreadLocal变量都是各自独立的;
ThreadLocal适合在一个线程的处理流程中保持上下文(避免了同一参数在所有方法中传递);
使用ThreadLocal要用try … finally结构,并在finally中清除。