第十二届蓝桥杯(比赛时间2021.4.18)比赛前一天基础知识回顾
一.基本知识
1. 今天,我们从从输入输出说起~
为了便于操作,该部分统一引用的头文件是
#include <stdio.h>
#include <cstring>
#include <string.h>
下文不再单独强调头文件的问题!!!
1.1 读取一个字符
char ch=getchar();
1.2 读取一行字符串(含空格)
1.2.1针对char数组
char a[50];
cin.get(a,50);//方法1
gets(a);//方法2
1.2.2针对string字符串
string a;
getline(cin,a);
2. 什么?用函数也能操作数组!!!
2.1 数组排序(升序)
头文件:
#include <algorithm>
函数:
sort(数组名,数组名+数组个数,重写函数返回值是bool类型);
2.2 数组求和
头文件:
#include <numeric>
函数:
int sum_array=accumulate(数组名,数组名+数组个数,0);
2.3 数组最大(小)值
头文件:
#include <algorithm>
函数:
max_element(数组名,数组名+数组个数)//得到的最大值的内存地址
min_element(数组名,数组名+数组个数)//得到的最小值的内存地址
//注意这里要采用指针!!!
3.还有vector别忘记!!!
头文件
#include <vector>
函数:
3.1 vector 的初始化
可以有五种方式,举例说明如下:
(1) vector<int> a(10);//定义了10个整型元素的向量(尖括号中为元素类型名,它可以是任何合法的数据类型),但没有给出初值,其值是不确定的。
(2)vector<int> a(10,1); //定义了10个整型元素的向量,且给出每个元素的初值为1
(3)vector<int> a(b); //用b向量来创建a向量,整体复制性赋值
(4)vector<int> a(b.begin(),b.begin+3);//定义了a值为b中第0个到第2个(共3个)元素
(5)int b[7]={1,2,3,4,5,9,8};
vector<int> a(b,b+7); //从数组中获得初值
3.2 vector 操作
3.2.1 增添
vector<int> a;
for(int i=0;i<10;i++)
a.push_back(i);
3.2.2 读取
int a[6]={1,2,3,4,5,6};
vector<int> b(a,a+4);
for(int i=0;i<=b.size()-1;i++)
cout<<b[i]<<" ";
3.2.3 插入
a.insert(a.begin(), 1000); //将1000插入到向量a的起始位置前
a.insert(a.begin(), 3, 1000) ; //将1000分别插入到向量元素位置的0-2处(共3个元素)
3.2.4 删除
b.erase(b.begin()) ; //将起始位置的元素删除
b.erase(b.begin(), b.begin()+3) ; //将(b.begin(), b.begin()+3)之间的元素删除
3.2.5 其他
(1)sort(a.begin(),a.end()); //对a中的从a.begin()(包括它)到a.end()(不包括它)的元素进行从小到大排列
(2)sort(a.rbegin(),a.rend());//从大到小排列
(2)reverse(a.begin(),a.end()); //对a中的从a.begin()(包括它)到a.end()(不包括它)的元素倒置,但不排列,如a中元素为1,3,2,4,倒置后为4,2,3,1
(3)copy(a.begin(),a.end(),b.begin()+1); //把a中的从a.begin()(包括它)到a.end()(不包括它)的元素复制到b中,从b.begin()+1的位置(包括它)开 始复制,覆盖掉原有元素
(4)find(a.begin(),a.end(),10); //在a中的从a.begin()(包括它)到a.end()(不包括它)的元素中查找10,若存在返回其在向量中的位置
4.听说你还不会用栈和队列?!
4.1 栈
使用标准库的栈和队列时, 应包含先关头文件.
在栈中应包含头文件: #include< stack >
定义: stack< int > s;
s.empty(); //如果栈为空则返回true, 否则返回false;
s.size(); //返回栈中元素的个数
s.top(); //返回栈顶元素, 但不删除该元素
s.pop(); //弹出栈顶元素, 但不返回其值
s.push(); //将元素压入栈顶
4.2 队列
包含头文件: #include< queue >
定义: queue< int > q;
q.empty(); //如果队列为空返回true, 否则返回false
q.size(); //返回队列中元素的个数
q.front(); //返回队首元素但不删除该元素
q.pop(); //弹出队首元素但不返回其值
q.push(); //将元素压入队列
q.back(); //返回队尾元素的值但不删除该元素
二. 数据结构+算法
5. 你和成功有时候只差亿丢丢数学知识~
5.1 N的因子个数
条件:给定任意一个一个正整数N 要求:求其因子的个数 首先给出结论:对于任意的整型N,分解质因数得到N= P1^x1 * P2^x2* ……
- Pn^xn;
则N的因子个数M为 M=(x1+1) * (x2+1) * …… *(xn+1);