MMDetection是由商汤科技和香港中文大学开源的基于Pytorch的深度学习计算机视觉工具箱,针对目标检测、实例分割、全景分割、模型蒸馏等计算机视觉任务,复现了诸多最新论文成果,尤其是大量CVPR论文。它将数据集构建、模型搭建、训练策略等过程封装成模块,基于Pytorch实现了大量目标检测算法,通过模块调用,能用少量代码实现新算法,大幅提高代码复用率。
整个MMLab家族除了MMDetection,还包含针对目标跟踪任务的MMTracking,针对3D目标检测任务的MMDetection3D等开源项目,他们都是以Pytorch和MMCV以基础。Pytorch不需要过多介绍,MMCV是一个面向计算机视觉的基础库,最主要作用是提供了基于Pytorch的通用训练框架,比如我们常提到的Registry、Runner、Hook等功能都是在MMCV中支持的。另外,MMCV还提供了通用IO接口、多种CNN网络结构、高质量实现的常见CUDA算子,这里就不进一步展开了。
目录
Failed to connect to github.com port 443 after 21090 ms: Timed out
AssertionError: MMCV==1.7.2 is used but incompatible. Please install mmcv>=2.0.0rc4, <2.2.0
一、安装过程
1.创建conda虚拟环境
(1)首先确保本地已经安装了conda。打开命令行输入下列命令可以检验是否安装及当前conda的版本。
conda -V
(2)然后打开pycharm,使用下列命令开始创建一个新的conda虚拟环境,并激活。
anaconda命令创建python版本为x.x,名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到。
conda create -n your_env_name python=x.x
此处我设置新conda虚拟环境名称是openmmlab,python的版本是3.8。
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
过程如下图所示,
安装结果如下图所示,
2.安装pytorch
安装pytorch的时候采用 pip 或者 pip3都可以。
需要注意的是,此处我安装的是cuda11.8,这里的 torch==2.1.0 是因为在下一步要与mmcv保持版本对应一致。
pip3 install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
过程如下图所示,
3.安装MIM
使用下列命令通过pip安装openmim,
pip install -U openmim
过程如下图所示,