MMDetection 详细安装过程

MMDetection是由商汤科技和香港中文大学开源的基于Pytorch的深度学习计算机视觉工具箱,针对目标检测、实例分割、全景分割、模型蒸馏等计算机视觉任务,复现了诸多最新论文成果,尤其是大量CVPR论文。它将数据集构建、模型搭建、训练策略等过程封装成模块,基于Pytorch实现了大量目标检测算法,通过模块调用,能用少量代码实现新算法,大幅提高代码复用率。

整个MMLab家族除了MMDetection,还包含针对目标跟踪任务的MMTracking,针对3D目标检测任务的MMDetection3D等开源项目,他们都是以Pytorch和MMCV以基础。Pytorch不需要过多介绍,MMCV是一个面向计算机视觉的基础库,最主要作用是提供了基于Pytorch的通用训练框架,比如我们常提到的Registry、Runner、Hook等功能都是在MMCV中支持的。另外,MMCV还提供了通用IO接口、多种CNN网络结构、高质量实现的常见CUDA算子,这里就不进一步展开了。

目录

一、安装过程

1.创建conda虚拟环境

2.安装pytorch

3.安装MIM

4.安装mmcv和mmengine

5.git克隆源码文件

二、验证

验证安装是否成功

三、解决过程中的报错问题

Failed to connect to github.com port 443 after 21090 ms: Timed out

报错场景

解决方法

AssertionError: MMCV==1.7.2 is used but incompatible. Please install mmcv>=2.0.0rc4, <2.2.0

报错场景

解决方法


一、安装过程

1.创建conda虚拟环境

(1)首先确保本地已经安装了conda。打开命令行输入下列命令可以检验是否安装及当前conda的版本。

conda -V

(2)然后打开pycharm,使用下列命令开始创建一个新的conda虚拟环境,并激活。

anaconda命令创建python版本为x.x,名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到

conda create -n your_env_name python=x.x

此处我设置新conda虚拟环境名称是openmmlab,python的版本是3.8。

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

 过程如下图所示,

安装结果如下图所示, 

2.安装pytorch

安装pytorch的时候采用 pip 或者 pip3都可以。

需要注意的是,此处我安装的是cuda11.8,这里的 torch==2.1.0 是因为在下一步要与mmcv保持版本对应一致。

pip3 install torch==2.1.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

过程如下图所示,

3.安装MIM

使用下列命令通过pip安装openmim,

pip install -U openmim

过程如下图所示, 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值