剧本角色情感识别

beasline

数据分析、预处理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#%%  数据分析、预处理
from collections import defaultdict
import matplotlib.pyplot as plt
# 常用包
import numpy as np
import pandas as pd
import seaborn as sns
# 导入torch
import torch
import torch.nn.functional as F
from pylab import rcParams
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.model_selection import train_test_split
from torch import nn
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
# 导入transformers
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
%matplotlib inline
%config InlineBackend.figure_format='retina' # 主题
sns.set(style='whitegrid', palette='muted', font_scale=1.2)
HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"]
sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))
rcParams['figure.figsize'] = 12, 8
RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device
torch.cuda.is_available()
###########读取数据
with open('train_dataset_v2.tsv', 'r', encoding='utf-8') as handler:
    lines = handler.read().split('\n')[1:-1]

    data = list()
    for line in tqdm(lines):
        sp = line.split('\t')
        if len(sp) != 4:
            print("ERROR:", sp)
            continue
        data.append(sp)
train = pd.DataFrame(data)
train.columns = ['id', 'content', 'character', 'emotions']
test = pd.read_csv('test_dataset.tsv', sep='\t')
submit = pd.read_csv('submit_example.tsv', sep='\t')
train = train[train['emotions'] != '']
###########数据处理
train['text'] = train[ 'content'].astype(str)  +'角色: ' + train['character'].astype(str)
test['text'] = test['content'].astype(str) + ' 角色: ' + test['character'].astype(str)
train['emotions'] = train['emotions'].apply(lambda x: [int(_i) for _i in x.split(',')])
train[['love', 'joy', 'fright', 'anger', 'fear', 'sorrow']] = train['emotions'].values.tolist()
test[['love', 'joy', 'fright', 'anger', 'fear', 'sorrow']] =[0,0,0,0,0,0]
train['love'].value_counts()
############tokenizer
PRE_TRAINED_MODEL_NAME = 'bert'
tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
token_lens = []
for txt in tqdm(train.text):
    tokens = tokenizer.encode(txt, max_length=512)
    token_lens.append(len(tokens))
    
############数据分析
sns.distplot(token_lens)
plt.xlim([0, 256]);
plt.xlabel('Token count');

pd.Series(token_lens).describe()
MAX_LEN=128 # 这里我们暂时选定128
target_cols=['love', 'joy', 'fright', 'anger', 'fear', 'sorrow']

构建深度学习数据集


#%%  构建深度学习数据集
class RoleDataset(Dataset):
    def __init__(self,texts,labels,tokenizer,max_len):
        self.texts=texts
        self.labels=labels
        self.tokenizer=tokenizer
        self.max_len=max_len
    def __len__(self):
        return len(self.texts)
    
    def __getitem__(self,item):
        """
        item 为数据索引,迭代取第item条数据
        """
        text=str(self.texts[item])
        label=self.labels[item]
        
        encoding=self.tokenizer.encode_plus(
            text,
            add_special_tokens=True,
            max_length=self.max_len,
            return_token_type_ids=True,
            pad_to_max_length=True,
            return_attention_mask=True,
            return_tensors='pt',
        )
        
#         print(encoding['input_ids'])
        sample = {
            'texts': text,
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten()
        }
        for label_col in target_cols:
            sample[label_col] = torch.tensor(label[label_col], dtype=torch.float)
        return sample
    
df_train, df_val = train_test_split(train, test_size=0.1, random_state=RANDOM_SEED)

def create_data_loader(df,tokenizer,max_len,batch_size):
    ds=RoleDataset(
        texts=df['text'].values,
        labels=df[target_cols].to_dict('records'),
        tokenizer=tokenizer,
        max_len=max_len
    )
    
    return DataLoader(
        ds,
        batch_size=batch_size,
#         num_workers=4 # windows多线程
    )

BATCH_SIZE = 16
train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
# test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)

data = next(iter(train_data_loader))
data.keys()

print(data['input_ids'].shape)
print(data['attention_mask'].shape)
print(data['love'].shape)

多目标回归模型构建


#%%  多目标回归模型构建
bert_model = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)
class EmotionClassifier(nn.Module):
    def __init__(self, n_classes):
        super(EmotionClassifier, self).__init__()
        self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)
        self.out_love = nn.Linear(self.bert.config.hidden_size, n_classes)
        self.out_joy = nn.Linear(self.bert.config.hidden_size, n_classes)
        self.out_fright = nn.Linear(self.bert.config.hidden_size, n_classes)
        self.out_anger = nn.Linear(self.bert.config.hidden_size, n_classes)
        self.out_fear = nn.Linear(self.bert.config.hidden_size, n_classes)
        self.out_sorrow = nn.Linear(self.bert.config.hidden_size, n_classes)
    def forward(self, input_ids, attention_mask):
        _, pooled_output = self.bert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict = False
        )
        love = self.out_love(pooled_output)
        joy = self.out_joy(pooled_output)
        fright = self.out_fright(pooled_output)
        anger = self.out_anger(pooled_output)
        fear = self.out_fear(pooled_output)
        sorrow = self.out_sorrow(pooled_output)
        return {
            'love': love, 'joy': joy, 'fright': fright,
            'anger': anger, 'fear': fear, 'sorrow': sorrow,
        }

class_names=[1]
model = EmotionClassifier(len(class_names))
model = model.to(device)

模型训练


#%% 模型训练
EPOCHS = 1 # 训练轮数

optimizer = AdamW(model.parameters(), lr=3e-5, correct_bias=False)
total_steps = len(train_data_loader) * EPOCHS

scheduler = get_linear_schedule_with_warmup(
  optimizer,
  num_warmup_steps=0,
  num_training_steps=total_steps
)

loss_fn = nn.MSELoss().to(device)

def train_epoch(
  model, 
  data_loader, 
  criterion, 
  optimizer, 
  device, 
  scheduler, 
  n_examples
):
    model = model.train()
    losses = []
    correct_predictions = 0
    for sample in tqdm(data_loader):
        input_ids = sample["input_ids"].to(device)
        attention_mask = sample["attention_mask"].to(device)
        outputs = model(
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        loss_love = criterion(outputs['love'], sample['love'].to(device))
        loss_joy = criterion(outputs['joy'], sample['joy'].to(device))
        loss_fright = criterion(outputs['fright'], sample['fright'].to(device))
        loss_anger = criterion(outputs['anger'], sample['anger'].to(device))
        loss_fear = criterion(outputs['fear'], sample['fear'].to(device))
        loss_sorrow = criterion(outputs['sorrow'], sample['sorrow'].to(device))
        loss = loss_love + loss_joy + loss_fright + loss_anger + loss_fear + loss_sorrow
        
        
        losses.append(loss.item())
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
        optimizer.step()
        scheduler.step()
        optimizer.zero_grad()
#     return correct_predictions.double() / (n_examples*6), np.mean(losses)
    return np.mean(losses)

def eval_model(model, data_loader, criterion, device, n_examples):
    model = model.eval() # 验证预测模式

    losses = []
    correct_predictions = 0

    with torch.no_grad():
        for sample in tqdm(data_loader):
            input_ids = sample["input_ids"].to(device)
            attention_mask = sample["attention_mask"].to(device)
            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask
            )
            loss_love = criterion(outputs['love'], sample['love'].to(device))
            loss_joy = criterion(outputs['joy'], sample['joy'].to(device))
            loss_fright = criterion(outputs['fright'], sample['fright'].to(device))
            loss_anger = criterion(outputs['anger'], sample['anger'].to(device))
            loss_fear = criterion(outputs['fear'], sample['fear'].to(device))
            loss_sorrow = criterion(outputs['sorrow'], sample['sorrow'].to(device))
            loss = loss_love + loss_joy + loss_fright + loss_anger + loss_fear + loss_sorrow


            losses.append(loss.item())
    return  np.mean(losses)

history = defaultdict(list) # 记录10轮loss和acc
best_loss = float('inf')

for epoch in range(EPOCHS):

    print(f'Epoch {epoch + 1}/{EPOCHS}')
    print('-' * 10)

#     train_loss = train_epoch(
#         model,
#         train_data_loader,
#         loss_fn,
#         optimizer,
#         device,
#         scheduler,
#         len(df_train)
#     )

    print(f'Train loss {train_loss}')

    val_loss = eval_model(
        model,
        val_data_loader,
        loss_fn,
        device,
        len(df_val)
    )

    print(f'Val   loss {val_loss} ')
    print()

    history['train_loss'].append(train_loss)
    history['val_loss'].append(val_loss)

    if val_loss < best_loss:
        torch.save(model.state_dict(), 'best_model_state.bin')
       

模型预测


#%% 模型预测
test_data_loader = create_data_loader(test, tokenizer, MAX_LEN, BATCH_SIZE)
def predict(model):
    val_loss = 0
    test_pred = defaultdict(list)
    model.eval()
    for step, batch in tqdm(enumerate(test_data_loader)):
        b_input_ids = batch['input_ids'].to(device)
        b_attention_mask = batch['attention_mask'].to(device)

        with torch.no_grad():
            logits = model(input_ids=b_input_ids, attention_mask=b_attention_mask)
            for col in target_cols:
                test_pred[col].append(logits[col].to('cpu').numpy())
    preds = {}
    for col in target_cols:
        print(len(np.concatenate(test_pred[col])))
        preds[col] = (np.concatenate(test_pred[col]))
    return preds

submit = pd.read_csv('data/submit_example.tsv', sep='\t')

best_model = EmotionClassifier(len(class_names))
path = f'best_model_state.bin'
best_model.load_state_dict(torch.load(path))
best_model.to(device)
test_pred = predict(best_model)

label_preds = []
for col in target_cols:
    preds = test_pred[col]
    label_preds.append(preds.flatten())
sub = submit.copy()
sub['emotion'] = np.stack(label_preds, axis=1).tolist()
sub['emotion'] = sub['emotion'].apply(lambda x: ','.join([str(i) for i in x]))
sub.head()



sub.to_csv(f'baseline.tsv', sep='\t', index=False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值