day 1 第一章数组
1.数组理论基础
1.1数组概念
- 数组在java中是一种引用数据类型(不是基本数据类型),父类为Object
- 数组是一个容器,可以储存相同类型的数据: 基本数据类型和引用数据类型
- 数组的存储位置在JVM(java虚拟机)内存划分中的堆内存中,用new来创建的内存空间,是一串连续的内存地址。每一个元素类型相同,因此占用内存空间大小一样。由于很难在内存空间上找到连续的特大空间,因此数组无法存储大量数据。
- 元素查询/检索方便,每个元素效率相同。随机删除/添加元素时效率较低。
1.2数组的初始化
静态初始化(指定内容,长度等于内容个数)
数据类型[] 数组名 = new 数据类型[]{元素1,元素2,元素3…};
int[] arr = new int[]{1,2,3};
// 可以拆分
int[] arr;
arr = new int[]{1,2,3};
动态初始化(指定长度,默认初始值由数组的字符类型而定)
数组存储的数据类型[ ] 数组名字 = new 数组存储的数据类型[数组长度];
数组存储的数据类型 数组名字[ ] = new 数组存储的数据类型[数组长度];
int[] arr = new int[3];
int arr[] = new int[3];
// 可以拆分
int[] arr;
arr = new int[3];
1.3数组常用API
- Arrays.toString()
- Arrays.asList()
- List转数组 toArray()
2.leetcode704 二分查找
二分查找
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
提示:
你可以假设 nums 中的所有元素是不重复的。
n 将在 [1, 10000]之间。
nums 的每个元素都将在 [-9999, 9999]之间。
二分法区间问题
二分法最重要的两个点:
- while循环中 left 和 right 的关系,到底是 left <= right 还是 left < right
- 迭代过程中 middle 和 right 的关系,到底是 right = middle - 1 还是 right = middle
左闭右闭区间
第一种写法:每次查找的区间在[left, right](左闭右闭区间),根据查找区间的定义(左闭右闭区间),就决定了后续的代码应该怎么写才能对。因为定义 target 在[left, right]区间,所以有如下两点:
- 循环条件要使用while(left <= right),因为当(left == right)这种情况发生的时候,得到的结果是有意义的
- if(nums[middle] > target) , right 要赋值为 middle - 1, 因为当前的 nums[middle] 一定不是 target ,需要把这个 middle 位置上面的数字丢弃,那么接下来需要查找范围就是[left, middle - 1]
int search(int nums[], int size, int target) //nums是数组,size是数组的大小,target是需要查找的值
{
int left = 0;
int right = size - 1; // 定义了target在左闭右闭的区间内,[left, right]
while (left <= right) { //当left == right时,区间[left, right]仍然有效
int middle = left + ((right - left) / 2);//等同于 (left + right) / 2,防止溢出
if (nums[middle] > target) {
right = middle - 1; //target在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; //target在右区间,所以[middle + 1, right]
} else { //既不在左边,也不在右边,那就是找到答案了
return middle;
}
}
//没有找到目标值
return -1;
}
左开右闭区间
第二种写法:每次查找的区间在 [left, right),(左闭右开区间), 根据区间的定义,条件控制应该如下:
- 循环条件使用while (left < right)
- if (nums[middle] > target), right = middle,因为当前的 nums[middle] 是大于 target 的,不符合条件,不能取到 middle,并且区间的定义是 [left, right),刚好区间上的定义就取不到 right, 所以 right 赋值为 middle。
int search(int nums[], int size, int target)
{
int left = 0;
int right = size; //定义target在左闭右开的区间里,即[left, right)
while (left < right) { //因为left = right的时候,在[left, right)区间上无意义
int middle = left + ((right - left) / 2);
if (nums[middle] > target) {
right = middle; //target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1;
} else {
return middle;
}
}
// 没找到就返回-1
return -1;
}
总结: 二分法最重要的两个点,就是循环条件和后续的区间赋值问题
因为两者是相互联系,相互影响的,所以就需要两者统一,如果两者不统一,就会出现问题
所以循环条件和赋值问题必须统一,也就是循环不变量
3.leetcode27 移除元素
移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
这道题的第一想法就是使用两个指针来做,大家叫一下这种用法为快慢指针。一个指针在后边等待处理,一个指针在前面寻找可以用来处理的数据。当然,快慢指针也还可以有其他走法,比如一个指针走一步,另一个指针走两步这样子。
class Solution {
public int removeElement(int[] nums, int val) {
int slow = 0;
for(int fast = 0; fast < nums.length; fast++) {
if (nums[fast] != val) {
nums[slow++] = nums[fast];
}
}
return slow;
}
}