第三场
D - Tokitsukaze and Multiple
thinking :
题意是将给出的数相加计算出 其中p 的倍数的最大个数。由题意可得,在任意两个数相加时,其模值必在0—p-1之间,将两数相加的模值替换掉之前的两个数字,得到长度减一的效果,用0和1 标记对应模值是否出现,从而代表被处理过的但还没有达到 p 的倍数的值, 直到某次得到的模值为 0 时,再清空之前的标记(代表得到了 p 的倍数);在此过程中记录清空标记的次数,b
code :
#include <bits/stdc++.h>
using namespace std;
int main(){
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
int T; cin >> T;
while (T --){
int n;
int p;
int x;
cin >> n >> p;
map<int, int> mp;//标记0--p-1是否出现
mp[0] = 1;
int now = 0, res = 0;
for(int i = 0; i < n; i ++){
cin >> x;
now = (now + x) % p;
if(mp.count(now)){//若出现过,则清栈
res ++;
mp.clear();
mp[0] = 1;
now = 0;
}
else{mp[now] = 1;}
}
cout << res << endl;
}
return 0;
}
E - Little W and Contest
thinking :
由题意可得,三个人为一组的小队中,至少需要两名能力为 2 的选手,最多需要一名能力为 1 的选手;而附加条件为任意两个选手之间不相互认识。当两个能力为1 的选手相互认识时,这显然对我们的组合结果没有影响,而当能力为 2 的选手与任意能力的选手认识时,组合的结果会在没有任何人相互认识的结果要小。由这个性质,我们可以先用二位数组ki[i][j]表示 i 位选手能力为 j 时的组合数,再先后一一添加在介绍后相互认识的选手,组成连通块,然后减去此连通块下,造成的组合数减少的数量,从而达到选手之间两两不相识的效果。
code :
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 100005;
const ll Mod = 1e9 + 7;
int one[N];
int two[N];
int x, n;
int u, v;
struct functions{
ll ki[4][7];
functions(){//构造函数
memset(ki, 0, sizeof(ki));
ki[0][0] = 1;
}
void init(){//初始化
memset(ki, 0, sizeof(ki));
ki[0][0] = 1;
}
void add_nCm(ll a, ll b){
for(int i = 3; i; i--){
for(int j = 6; j; j--){
ki[i][j] += a * ki[i-1][j-1] % Mod;
if(j > 1) ki[i][j] += b * ki[i-1][j-2] % Mod;
ki[i][j] %= Mod;
}
}
}
void reduce_union(ll a, ll b){
for(int i = 1; i <= 3; i++){
for(int j = 1; j <= 6; j++){
ki[i][j] -= a * ki[i-1][j-1] % Mod;
if(j > 1) ki[i][j] -= b * ki[i-1][j-2] % Mod;
ki[i][j] = (ki[i][j] % Mod + Mod) % Mod;
}
}
}
ll res() { return (ki[3][5] + ki[3][6]) % Mod; }
}solve;
int pos[N];
int find_pos(int p){ return pos[p] == p ? p : pos[p] = find_pos(pos[p]); }
void unions(ll x, ll y){
const int pos_x = find_pos(x);
const int pos_y = find_pos(y);
one[pos_y] += one[pos_x];
two[pos_y] += two[pos_x];
pos[pos_x] = pos_y;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
int T; cin >> T;
while(T--){
solve.init();
cin >> n;
for(int i = 1; i <= n; i++){
cin >> x;
pos[i] = i;
one[i] = two[i] = 0;
if(x == 1) one[i] ++;
else two[i] ++;
solve.add_nCm(one[i], two[i]);
}
cout << solve.res() << endl;
for(int i = 1; i < n; i++){
cin >> u >> v;
const int pos_u = find_pos(u);
const int pos_v = find_pos(v);
solve.reduce_union(one[pos_u], two[pos_u]);
solve.reduce_union(one[pos_v], two[pos_v]);
unions(u, v);
solve.add_nCm(one[find_pos(u)], two[find_pos(u)]);
cout << solve.res() << endl;
}
}
return 0;
}