RNN 股票预测

一、数据集介绍

     

 只取第三列的开盘数据进行预测。

二、环境

        tensorflow2.1、sklearn、pandas、numpy......

三、实现和介绍

        

import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dropout, Dense, SimpleRNN
import matplotlib.pyplot as plt
import os
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
import math

maotai = pd.read_csv('./SH600519.csv')  # 读取股票文件

training_set = maotai.iloc[0:2426 - 300, 2:3].values  # 前(2426-300=2126)天的开盘价作为训练集,表格从0开始计数,2:3 是提取[2:3)列,前闭后开,故提取出C列开盘价
test_set = maotai.iloc[2426 - 300:, 2:3].values  # 后300天的开盘价作为测试集

# 归一化
sc = MinMaxScaler(feature_range=(0, 1))  # 定义归一化:归一化到(0,1)之间
# 一般先对训练数据fit_transform,对测试数据用transform。
# 对test_data进行fit_transform()就会"overfitting"
# 对test数据而言,我们应该使用训练集得到的平均值和标准差来归一化,而不是test数据集本身的平均值和均方误差
# transform一般会在fit的基础上进行归一化,这里的fit和model.fit是完全不同的概念
# 本例中没有使用fit应该是fit_transform操作已经包含了训练数据集的fit操作并保存了其均值、方差、最大最小值等参数以供transform使用

# fit():计算数据的参数,(均值),(标准差),并存储在对象中(例如实例化的CountVectorizer()等)。
# transform():将这些参数应用到数据集,进行标准化(尺度化)。
# fit_transform():将前两种方法合并,fit + transform,然后对数据集使用。

training_set_scaled = sc.fit_transform(training_set)  # 求得训练集的最大值,最小值这些训练集固有的属性,并在训练集上进行归一化
test_set = sc.transform(test_set)  # 利用训练集的属性对测试集进行归一化

x_train = []
y_train = []

x_test = []
y_test = []

# 测试集:csv表格中前2426-300=2126天数据
# 利用for循环,遍历整个训练集,提取训练集中连续60天的开盘价作为输入特征x_train,第61天的数据作为标签,for循环共构建2426-300-60=2066组数据。
for i in range(60, len(training_set_scaled)):
    x_train.append(training_set_scaled[i - 60:i, 0])
    y_train.append(training_set_scaled[i, 0])
# 对训练集进行打乱
np.random.seed(7)
np.random.shuffle(x_train)
np.random.seed(7)
np.random.shuffle(y_train)
tf.random.set_seed(7)
# 将训练集由list格式变为array格式
x_train, y_train = np.array(x_train), np.array(y_train)

# 使x_train符合RNN输入要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]。
# 此处整个数据集送入,送入样本数为x_train.shape[0]即2066组数据;输入60个开盘价,预测出第61天的开盘价,循环核时间展开步数为60; 每个时间步送入的特征是某一天的开盘价,只有1个数据,故每个时间步输入特征个数为1
x_train = np.reshape(x_train, (x_train.shape[0], 60, 1))
# 测试集:csv表格中后300天数据
# 利用for循环,遍历整个测试集,提取测试集中连续60天的开盘价作为输入特征x_train,第61天的数据作为标签,for循环共构建300-60=240组数据。
for i in range(60, len(test_set)):
    x_test.append(test_set[i - 60:i, 0])
    y_test.append(test_set[i, 0])
# 测试集变array并reshape为符合RNN输入要求:[送入样本数, 循环核时间展开步数, 每个时间步输入特征个数]
x_test, y_test = np.array(x_test), np.array(y_test)
x_test = np.reshape(x_test, (x_test.shape[0], 60, 1))

model = tf.keras.Sequential([
    SimpleRNN(80, return_sequences=True),
    Dropout(0.2),
    SimpleRNN(100),
    Dropout(0.2),
    Dense(1)
])

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              loss='mean_squared_error')  # 损失函数用均方误差
# 该应用只观测loss数值,不观测准确率,所以删去metrics选项,一会在每个epoch迭代显示时只显示loss值

checkpoint_save_path = "./checkpoint/rnn_stock.ckpt"

if os.path.exists(checkpoint_save_path + '.index'):
    print('-------------load the model-----------------')
    model.load_weights(checkpoint_save_path)

cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                 save_weights_only=True,
                                                 save_best_only=True,
                                                 monitor='val_loss')

history = model.fit(x_train, y_train, batch_size=64, epochs=50, validation_data=(x_test, y_test), validation_freq=1,
                    callbacks=[cp_callback])

model.summary()

file = open('./weights.txt', 'w')  # 参数提取
for v in model.trainable_variables:
    file.write(str(v.name) + '\n')
    file.write(str(v.shape) + '\n')
    file.write(str(v.numpy()) + '\n')
file.close()

loss = history.history['loss']
val_loss = history.history['val_loss']

plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

################## predict ######################
# 测试集输入模型进行预测
predicted_stock_price = model.predict(x_test)
# 对预测数据还原---从(0,1)反归一化到原始范围
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
# 对真实数据还原---从(0,1)反归一化到原始范围
real_stock_price = sc.inverse_transform(test_set[60:])
# 画出真实数据和预测数据的对比曲线
plt.plot(real_stock_price, color='red', label='MaoTai Stock Price')
plt.plot(predicted_stock_price, color='blue', label='Predicted MaoTai Stock Price')
plt.title('MaoTai Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('MaoTai Stock Price')
plt.legend()
plt.show()

##########evaluate##############
# calculate MSE 均方误差 ---> E[(预测值-真实值)^2] (预测值减真实值求平方后求均值)
mse = mean_squared_error(predicted_stock_price, real_stock_price)
# calculate RMSE 均方根误差--->sqrt[MSE]    (对均方误差开方)
rmse = math.sqrt(mean_squared_error(predicted_stock_price, real_stock_price))
# calculate MAE 平均绝对误差----->E[|预测值-真实值|](预测值减真实值求绝对值后求均值)
mae = mean_absolute_error(predicted_stock_price, real_stock_price)
print('均方误差: %.6f' % mse)
print('均方根误差: %.6f' % rmse)
print('平均绝对误差: %.6f' % mae)

执行结果:

loss曲线图:

预测效果图:

总体结果:

首先,对csv中的数据进行切片 --> iloc函数

然后,对数据进行归一化,这里要注意:

# 一般先对训练数据fit_transform,对测试数据用transform。
# 对test_data进行fit_transform()就会"overfitting"
# 过拟合的原因:对test数据而言,我们应该使用训练集得到的平均值和标准差来归一化,而不是test数据集本身的平均值和均方误差
# transform一般会在fit后的基础上进行归一化,注意这里的fit和model.fit是完全不同的概念
# 本例中没有使用fit应该是fit_transform操作已经包含了训练数据集的fit操作并保存了其均值、方差、最大最小值等参数以供transform使用

这几种函数的区别:

# fit():计算数据的参数,(均值),(标准差),并存储在对象中(例如实例化的CountVectorizer()等)。
# transform():将这些参数应用到数据集,进行标准化(尺度化)。
# fit_transform():将前两种方法合并,fit + transform,然后对数据集使用。
 

最后可以通过函数 inverse_transform函数 来还原归一化内容

随机打乱数据和标签,进行迭代训练,保存模型,提取参数并保存 ,数据可视化,预测模型准确率并可视化。

参考链接:

https://blog.csdn.net/yyhhlancelot/article/details/85097656?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.nonecase

https://blog.csdn.net/weixin_39190382/article/details/106383101

 

 

 

使用PyTorch中的RNN模型进行股票预测可以分为以下几个步骤: 1. 数据预处理:将原始股票数据进行归一化处理,划分训练集和测试集,并将数据转换为PyTorch中的Tensor格式。 2. 构建RNN模型:使用PyTorch中的nn.RNN模块构建RNN模型,并定义损失函数和优化器。 3. 训练模型:使用训练集对RNN模型进行训练,并记录训练过程中的损失值。 4. 模型预测:使用测试集对训练好的RNN模型进行预测,并计算预测结果与真实值之间的误差。 以下是一个简单的PyTorch RNN股票预测代码示例: ```python import torch import torch.nn as nn import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler # 数据预处理 data = pd.read_csv('stock_data.csv') scaler = MinMaxScaler() data['Close'] = scaler.fit_transform(data['Close'].values.reshape(-1, 1)) train_data = data.iloc[:200, :] test_data = data.iloc[200:, :] train_x = torch.Tensor(train_data['Close'].values[:-1]).view(-1, 1, 1) train_y = torch.Tensor(train_data['Close'].values[1:]).view(-1, 1, 1) test_x = torch.Tensor(test_data['Close'].values[:-1]).view(-1, 1, 1) test_y = torch.Tensor(test_data['Close'].values[1:]).view(-1, 1, 1) # 构建RNN模型 class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out model = RNN(1, 32, 1) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # 训练模型 for epoch in range(100): optimizer.zero_grad() output = model(train_x) loss = criterion(output, train_y) loss.backward() optimizer.step() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 100, loss.item())) # 模型预测 with torch.no_grad(): test_output = model(test_x) test_loss = criterion(test_output, test_y) print('Test Loss: {:.4f}'.format(test_loss.item())) test_output = scaler.inverse_transform(test_output.numpy().reshape(-1, 1)) test_y = scaler.inverse_transform(test_y.numpy().reshape(-1, 1)) print('Predicted Close price:', test_output) print('True Close price:', test_y) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值