💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
在区间预测领域,结合深度学习模型与分位数回归(Quantile Regression, QR)是一种强大的方法,用于估计预测值的不确定性范围。您提到的模型,如QRBiGRU、QRBiTCN、QRCNNBiGRU、QRCNNBIGRUATTENTION、QRCNNLSTM、QRGRU、QRLSTM、QRTCN,都是基于不同深度学习架构与分位数回归的结合。下面我将简要介绍这些模型及其在区间预测中的应用。本文用于风电场预测。
1. QRBiGRU
QRBiGRU 是结合了双向门控循环单元(BiGRU)和分位数回归的模型。BiGRU 能够捕捉序列数据中的双向依赖关系,而分位数回归则用于估计不同分位数的预测值,从而构建预测区间。
2. QRBiTCN
QRBiTCN 使用了双向时间卷积网络(BiTCN)与分位数回归。TCN(Temporal Convolutional Network)通过卷积操作捕捉时间序列中的特征,而双向结构则能同时考虑过去和未来的信息。结合分位数回归,QRBiTCN 能够生成更准确的预测区间。
3. QRCNNBiGRU
QRCNNBiGRU 结合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和分位数回归。CNN 用于提取序列中的局部特征,BiGRU 捕捉长期依赖,分位数回归则用于生成预测区间。
4. QRCNNBIGRUATTENTION
QRCNNBIGRUATTENTION 在 QRCNNBiGRU 的基础上增加了注意力机制(Attention Mechanism)。注意力机制能够动态地调整不同时间步长的权重,使得模型更加关注对预测结果影响较大的部分,从而提高预测区间的准确性。
5. QRCNNLSTM
QRCNNLSTM 结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)以及分位数回归。CNN 用于特征提取,LSTM 用于捕捉长期依赖关系,分位数回归则用于生成预测区间。
6. QRGRU
QRGRU 是简单的门控循环单元(GRU)与分位数回归的结合。GRU 是一种轻量级的循环神经网络,适用于处理时间序列数据,而分位数回归则用于生成预测区间。
7. QRLSTM
QRLSTM 是长短期记忆网络(LSTM)与分位数回归的结合。LSTM 因其能够处理长期依赖关系而在时间序列预测中广受欢迎,结合分位数回归后,QRLSTM 能够生成可靠的预测区间。
8. QRTCN
QRTCN 是时间卷积网络(TCN)与分位数回归的结合。TCN 通过卷积操作捕捉时间序列中的特征,而分位数回归则用于生成预测区间。TCN 的优势在于其并行处理能力,使得模型训练更加高效。
应用与实现
在实际应用中,这些模型通常用于时间序列数据的预测,如股票价格、交通流量、能源消耗等。使用Python和深度学习框架(如TensorFlow或PyTorch)可以方便地实现这些模型。在训练过程中,需要调整模型参数、优化器和学习率等,以获得最佳的预测性能。
结论
结合深度学习架构与分位数回归的模型在区间预测中表现出色,能够生成可靠的预测区间,为决策制定提供有力支持。不同的模型架构适用于不同的应用场景和数据特性,因此在实际应用中需要根据具体情况选择合适的模型。
📚2 运行结果
运行结果比较多,就不一一展示。
部分代码:
%% 导入数据
data = readmatrix('风电场预测.xlsx');
data = data(5665:6665,15); %选取部分数据,第15列为风电功率
[h1,l1]=data_process(data,8); %单步预测%步长为8,采用前8个时刻的风电功率预测第9个时刻的风电功率
res = [h1,l1];
num_samples = size(res,1); %样本个数
% 训练集和测试集划分
outdim = 1; % 最后一列为输出
num_size = 0.8; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
% 格式转换
for i = 1 : M
vp_train{i, 1} = p_train(:, i);
vt_train{i, 1} = t_train(:, i);
end
for i = 1 : N
vp_test{i, 1} = p_test(:, i);
vt_test{i, 1} = t_test(:, i);
end
save_net = [];
for i = 0.02 : 0.05 : 0.97 % 置信区间范围 0.97 - 0.02 = 0.95
%% 网络搭建
% 创建LSTM网络,
layers = [ ...
sequenceInputLayer(f_) % 输入层
lstmLayer(10)
reluLayer
fullyConnectedLayer(outdim) % 回归层
QRegressionLayer('out', i)];
% 参数设置
options = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 100, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.001, ... % 初始学习率
'Shuffle', 'every-epoch', ... % 训练打乱数据集
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 1, ... % 关闭优化过程
'Plots', 'none'); % 画出曲线
% 训练
net = trainNetwork(vp_train, vt_train, layers, options);
% 保存网络
save_net = [save_net, net];
end
%% 采用不同网络进行预测
for i = 1 : length(save_net)
i
% 仿真预测
t_sim1(i, :) = predict(save_net(i), vp_train);
t_sim2(i, :) = predict(save_net(i), vp_test );
% 数据反归一化
L_sim1{i} = cell2mat(mapminmax('reverse', t_sim1(i, :), ps_output));
L_sim2{i} = cell2mat(mapminmax('reverse', t_sim2(i, :), ps_output));
tt_sim1(i, :) = cell2mat(mapminmax('reverse', t_sim1(i, :), ps_output));
tt_sim2(i, :) = cell2mat(mapminmax('reverse', t_sim2(i, :), ps_output));
end
%% 得到预测均值
T_sim1 = mean(tt_sim1);
T_sim2 = mean(tt_sim2);
%% 性能评估
error1 = sqrt(sum((T_sim1 - T_train) .^2 ) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ) .^2 ) ./ N);
%% 绘图
figure
fill([1 : M, M : -1 : 1], [L_sim1{1}, L_sim1{end}(end : -1 : 1)], ...
'r', 'FaceColor', [1, 0.8, 0.8], 'EdgeColor', 'none')
hold on
plot(1 : M, T_train, 'r-', 1 : M, T_sim1', 'b-', 'LineWidth', 0.3)
legend('95%的置信区间', '真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'QRLSTM训练集预测结果对比'; ['RMSE = ' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
fill([1 : N, N : -1 : 1], [L_sim2{1}, L_sim2{end}(end : -1 : 1)], ...
'r', 'FaceColor', [1, 0.8, 0.8], 'EdgeColor', 'none')
hold on
plot(1 : N, T_test, 'r-', 1 : N, T_sim2', 'b-', 'LineWidth', 1)
legend('95%的置信区间', '真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'QRLSTM测试集预测结果对比'; ['RMSE = ' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 相关指标计算
% 指标计算
disp('…………QRLSTM训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train,T_sim1);
fprintf('\n')
disp('…………QRLSTM训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_test,T_sim2);
fprintf('\n')
%% 指标计算(区间覆盖率和区间平均宽度百分比)
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1] Xu Z , Li Y F , Huang H Z ,et al.A novel method based on CNN-BiGRU and AM model for bearing fault diagnosis[J].Journal of Mechanical Science and Technology, 2024, 38(7):3361-3369.DOI:10.1007/s12206-024-0610-2.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取