💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
线性规划(Linear Programming,LP)是一种在数学优化领域广泛应用的方法,近年来也被应用于路径规划问题中。 在路径规划领域,使用 LP 进行路径规划具有以下特点和优势: 一、规划原理 LP 通过建立数学模型来确定最优路径。首先,将路径规划问题转化为一个线性规划问题,明确目标函数和约束条件。目标函数通常是最小化路径长度、时间消耗或成本等,而约束条件则可能包括起点和终点的位置、障碍物的限制、交通规则等。通过求解这个线性规划问题,可以得到满足约束条件下的最优路径。 二、优势体现 1. 精确性:LP 基于严格的数学模型进行求解,能够提供精确的路径规划结果。它可以考虑各种复杂的约束条件,确保生成的路径在实际应用中是可行的。 2. 可扩展性:对于大规模的路径规划问题,LP 可以有效地处理。可以通过增加变量和约束条件来适应不同规模和复杂程度的问题,具有较好的可扩展性。 3. 灵活性:可以根据不同的需求和场景调整目标函数和约束条件。例如,可以根据不同的交通状况、时间限制或资源约束来优化路径规划。 使用 LP 进行路径规划为解决各种路径规划问题提供了一种有效的方法,具有精确性、可扩展性和灵活性等优势,在物流、机器人导航和交通规划等领域有着广泛的应用前景。
使用线性规划(LP)进行路径规划研究文档
一、引言
路径规划问题是在具有障碍物的环境中,按照某一评价标准,规划出一条从起始位置到达终点位置的最优或次优的无碰撞路径。线性规划(Linear Programming, LP)作为一种数学优化技术,常用于在给定线性等式或不等式约束条件下,求解线性目标函数的最优解。在路径规划领域,尽管LP不是最直接的解决方案,但通过适当的建模和转换,LP可以用于解决特定类型的路径规划问题。
二、LP在路径规划中的应用
2.1 问题建模
在将LP应用于路径规划时,首先需要将路径规划问题转化为LP问题。这通常涉及以下步骤:
- 定义决策变量:决策变量可以表示路径中的关键点(如节点或路段的选择)。
- 建立目标函数:目标函数通常是路径的总成本、时间或距离的最小化。
- 设定约束条件:约束条件包括障碍物避让、路径连续性、资源限制等。
2.2 示例建模
假设在一个简单的网格环境中,目标是从左上角(起点)移动到右下角(终点),每个网格单元代表一个可能的路径点,且路径点之间的移动成本是已知的。我们可以将问题建模为如下LP问题:
- 决策变量:xij,表示是否选择从点 i 到点 j 的路径(xij=1 表示选择,xij=0 表示不选择)。
- 目标函数:最小化总成本,即 min∑i,jcijxij,其中 cij 是从点 i 到点 j 的成本。
- 约束条件:
- 流量守恒:每个非起点非终点的点必须满足流入量等于流出量。
- 起点流出:从起点流出的路径只能有一条。
- 终点流入:到终点的路径只能有一条。
- 避障:路径不能穿越障碍物所在的网格。
2.3 求解方法
LP问题可以使用专门的求解软件(如Lindo、Excel Solver等)进行求解。在求解过程中,软件会根据目标函数和约束条件,通过迭代算法找到最优解或近似最优解。
三、LP路径规划的优势与局限
3.1 优势
- 数学严谨性:LP问题有严格的数学基础和求解方法,能够保证解的最优性或近似最优性。
- 灵活性:通过调整目标函数和约束条件,可以灵活地处理不同类型的路径规划问题。
3.2 局限
- 模型复杂度:将复杂的路径规划问题转换为LP模型可能非常困难,特别是当环境中有大量障碍物或路径选择较多时。
- 计算复杂度:对于大规模问题,LP求解的计算量可能非常大,导致求解时间过长。
四、结论与展望
尽管LP在路径规划中的应用有其局限性,但作为一种强大的数学优化工具,它在处理特定类型的路径规划问题时仍然具有重要价值。未来,随着算法和计算技术的发展,LP在路径规划领域的应用将更加广泛和深入。同时,也可以探索将LP与其他优化算法(如遗传算法、神经网络等)相结合,以进一步提高路径规划的效果和效率。
📚2 运行结果
主函数部分代码:
clearvars;
close all; clc;
%% PARAMS
dt = 0.5; % s
M = 16; % circle discretization
v_max = 70; % cm/s
w_max = pi/3; % rad/s
sigma = 2;
f_max = sigma * w_max * v_max; % maximum allowable force
mu = sigma * w_max;
%% Populating Objects in the Environment
% Object radii
r_O1 = 40; % cm
r_O2 = 40; % cm
r_O3 = 40; % cm
r_G = 20; % cm
% A = vehicle([0;0],[0.10;0], mu, dt);
A1 = vehicle([0;0],[0.10;0], mu, dt, 0);
A2 = vehicle([700;0],[-0.10;0], mu, dt, 0);
A3 = vehicle([500;600],[0.5;-0], mu, dt, 0);
G = target([700;700],[13;-2], dt, r_G);
O_1 = obstacle([500;500],[-7;-6], dt, r_O1);
O_2 = obstacle([500;700],[8;-3], dt, r_O2);
O_3 = obstacle([700;500],[4;8], dt, r_O3);
% Limits & bounds
L_min = 30; % [cm]
tF = 22; % [in s]
% Decision variable:
% [DV_x, DV_y, d_1, d_2, q_1, q_2]^T
plot(G.Position(1), G.Position(2), 'go','MarkerSize', G.Radius); hold on
plot(O_1.Position(1), O_1.Position(2), 'ko','MarkerSize', O_1.Radius);
plot(O_2.Position(1), O_2.Position(2), 'ko','MarkerSize', O_2.Radius);
plot(O_3.Position(1), O_3.Position(2), 'ko','MarkerSize', O_3.Radius);
for i = 1:round(tF/dt)
% Stuff that occurs at every time step
% Robot 1
[x1,fval,exitflag] = perTime(A1,G,O_1,O_2,O_3,f_max,M);
F1 = [x1(1);x1(2)];
% Robot 2
[x2,fval,exitflag] = perTime(A2,A1,O_1,O_2,O_3,f_max,M);
F2 = [x2(1);x2(2)];
% Robot 3
[x3,fval,exitflag] = perTime(A3,A1,O_1,O_2,O_3,f_max,M);
F3 = [x3(1);x3(2)];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]吕逸舟,毛建华,杜晓鹏,等.基于改进Dijkstra算法的民机信号敷设路径规划方法[J].机械设计与制造工程,2024,53(09):78-82.
[2]刘纪坤,袁雪颖,王佳茹,等.考虑火灾产物影响下的人员疏散路径规划研究[J/OL].计算机测量与控制:1-8[2024-09-18].http://kns.cnki.net/kcms/detail/11.4762.tp.20240913.1319.015.html.