【故障诊断】【pytorch】基于EMD-CNN故障分类的轴承故障诊断研究[西储大学数据](Python代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、经验模态分解(EMD)

三、卷积神经网络(CNN)

四、基于EMD-CNN的故障分类方法

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文档说明书下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于EMD-CNN(经验模态分解-卷积神经网络)的故障分类方法在轴承故障诊断研究中具有显著优势,特别是在处理非线性、非平稳信号时表现出色。以下是对该方法的详细研究,基于美国凯斯西储大学(CWRU)的轴承数据集。

一、引言

轴承作为机械设备中的关键部件,其运行状态直接影响到整个设备的性能和寿命。因此,对轴承进行故障诊断具有重要意义。CWRU轴承数据集是世界公认的轴承故障诊断标准数据集,为研究者提供了丰富的实验数据和验证平台。

二、经验模态分解(EMD)

  1. 原理

    • 经验模态分解是一种自适应信号时频处理方法,特别适用于非线性、非平稳信号的分析处理。它将信号分解为若干个本征模态函数(IMF),这些IMF分量代表了原始信号中的各频率分量,并按照从高频到低频的顺序依次排列。
  2. 优点

    • 是一种自适应的、数据驱动的分解方法,不需要预先假设信号的分布或结构。
    • 适用于处理各种类型的信号,包括非线性和非平稳信号。
  3. Python实现

    • 在Python中,可以使用PyEMD库来实现EMD。首先,需要安装该库(pip install EMD-signal,注意安装时可能需要移除其他相关包以避免冲突)。然后,导入相关包并生成一个信号示例,接着创建EMD对象对信号进行分解,最后绘制原始信号和每个IMF。

三、卷积神经网络(CNN)

  1. 原理

    • CNN是一种深度学习模型,特别适用于图像和信号处理。它通过卷积层、池化层、全连接层等结构来提取特征并进行分类。
  2. 在轴承故障诊断中的应用

    • 可以将EMD分解得到的IMF作为CNN的输入,利用CNN强大的特征提取和分类能力来进行轴承故障诊断。

四、基于EMD-CNN的故障分类方法

  1. 数据预处理

    • 从CWRU数据集中选取故障数据进行预处理,包括数据清洗、归一化等步骤。
    • 对故障数据进行EMD分解,得到IMF分量。
  2. 模型构建

    • 构建CNN模型,包括输入层、卷积层、池化层、全连接层和输出层。
    • 将IMF分量作为输入层的数据输入到CNN模型中。
  3. 模型训练与验证

    • 使用预处理后的数据集对CNN模型进行训练,并使用验证集进行模型验证。
    • 通过调整模型参数和优化算法来提高模型的分类性能。
  4. 结果分析

    • 对测试集进行分类测试,并计算分类准确率等指标来评估模型的性能。
    • 通过可视化方法展示分类结果和混淆矩阵等信息。

五、结论与展望

基于EMD-CNN的故障分类方法在轴承故障诊断研究中取得了良好的效果。该方法能够自适应地分解非线性、非平稳信号,并利用CNN强大的特征提取和分类能力来进行故障诊断。未来,可以进一步探索其他深度学习模型在轴承故障诊断中的应用,以及将该方法扩展到其他机械部件的故障诊断中。

总之,基于EMD-CNN的故障分类方法为轴承故障诊断提供了一种新的思路和方法,具有重要的理论意义和实际应用价值。

📚2 运行结果

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

 [1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.

[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.

[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.

[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).

[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.

🌈Python代码、数据、文档说明书下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值