💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
近年来极端灾害导致电网大停电事故频繁发生[1] ,配电网韧性反映配电系统对灾害的抵御、适应与恢复供电的能力[2] ,受到了广泛关注。此外,为应对能源枯竭和环境污染的双重危机,大量分布式电源(DG)、电能替代负荷接入配电网,为负荷恢复提供了解决方案[3] 。因此,在灾害前后有效利用各类分布式资源以减少停电损失,对提升配电网韧性具有重要意义。
考虑配电网内接入了光伏、移动储能、电动汽车充电桩(EVS)与柴油发电机等分布式资源,电网-交通网融合系统示意结构如图 1 所示。在灾害发生前配电网内负荷由上级主网供电,灾害发生后配电网失去主网供电且出现若干条线路故障,交通网络在灾害负荷恢复期间的实时通行能力受到灾害影响。
目前,国内外学者对利用分布式资源进行灾后恢复进行了广泛研究,主要包括孤岛微电网、应急发
电机与移动资源等方面[4] 。在孤岛微电网方面,文献[5]提出一种利用 DG 和远程控制开关恢复重要负荷的微电网形成机制。文献[6]在主网与配电线路故障时,利用柴油发电(DEG)、固定式储能与光伏(PV)机组恢复负荷。文献[7]提出一种基于计划微电网的负荷恢复方法,在主网供电中断时使负荷削减成本最小。文献[8]提出了考虑负荷分布与燃料型 DG 选址定容的恢复策略,减少了应急电源储备量。上述研究均需要预先配置微电网或大量燃料型电源,投资成本较高且不利于碳减排。
在电网-交通网融合系统中,移动储能的调度状态由其充放电状态和交通运输状态共同决定,具有
时空耦合特性。考虑移动储能 i 在节点 j 与节点 k 间的交通通行时间 T ME i,j,k ( t )与安装配置时间 T0 ME ,建立 移动储能的时空动态调度模型,设运输过程不消耗电能,其时空动态调度如图 2 所示。
📚2 运行结果
2.1 灾前预防阶段
灾前预防采用CCG算法,运行一下程序得到的结果如下:
为了更加清晰看到CC&G算法收敛情况以及不确定变量的取值情况,补充一下两个结果图。
通过上述两个结果图看出,程序是两次即完全收敛,第二个图是不确定性分布式光伏出力(仅考虑5个时刻),从图中能够看到光伏除第一个时间点受鲁棒保守度限制为下限外,其他时刻均为上限,而目标为储能配置和负荷削减成本,这样的结果和常理不符,光伏出力越小应该成本会越高,为了进一步验证程序问题,将光伏设置到下限值。
2.2 灾后恢复阶段
部分代码:
clc
close all
%% 表2 移动储能的动态调度结果
alpha_ME1 = value(alpha_ME1);
alpha_ME2 = value(alpha_ME2);
P_Mch = value(P_Mch);
P_Mdch = value(P_Mdch);
for t = 1:NT
disp(['**************' , num2str(O_T(t)) , ':00时刻**************'])
disp(['MESS1接入节点:' , num2str(find(alpha_ME1(:,t))) , ',充放电功率:' , num2str((P_Mdch(1,t) - P_Mch(1,t))*10000) , 'kW'])
disp(['MESS2接入节点:' , num2str(find(alpha_ME2(:,t))) , ',充放电功率:' , num2str((P_Mdch(2,t) - P_Mch(2,t))*10000) , 'kW'])
end
%% 图B3 灾害发生后光伏机组的预测出力
figure
for k = 1:5
if k ~= 4
plot(pv_curve(:,k) , 'linewidth' , 2.5)
hold on
end
end
ylabel('有功功率/kW')
xlabel('时间')
legend('PV1','PV2','PV3、PV4','PV5')
%% 图4 各时段负荷功率和恢复比例
P_Lsu = value(P_Lsu);
essential_load0 = sum(P_L_max(essential_user,:));
ordinary_load0 = sum(P_L_max(ordinary_user,:));
load0 = sum(P_L_max);
essential_load1 = sum(P_L_max(essential_user,:) - P_Lsu(essential_user,:));
ordinary_load1 = sum(P_L_max(ordinary_user,:) - P_Lsu(ordinary_user,:));
load1 = sum(P_Lsu);
figure
yyaxis left
e=bar([essential_load1./essential_load0*100;ordinary_load1./ordinary_load0*100]')
color=[0.300956435005654,0.810590442462569,0.577780697646748;0.521721248782275,0.451274164510932,0.911313227169849;0.561880235062444,0.249969169410276,0.376220283460707;0.241554770085929,0.955437531793689,0.228764772549632;0.912720162652781,0.142650346985794,0.423524871222756;0.825734269699093,0.512563384780399,0.273596220894793;0.444545883918906,0.971925137586938,0.444565843866667;0.982062563214574,0.648320621265659,0.627515046901424;0.578267561462169,0.614671003416509,0.534641253536576;0.234423496393930,0.469650371915959,0.385442159974304];
for i=1:2
set(e(i),'FaceColor',color(i,:));
end
ylabel('负荷恢复比例/%')
hold on
yyaxis right
plot(load1*1000*SB , 'pentagramk-' , 'linewidth' , 1.5 , 'MarkerSize' , 10)
ylabel('供电负荷功率/kW')
legend('重要负荷节点','普通负荷节点','供电负荷功率')
xlabel('时间')
%% 图B4 移动储能有功功率输出与接入位置的关系
figure
yyaxis left
e=bar(P_Mdch'*10000)
color=[0.300956435005654,0.810590442462569,0.577780697646748;0.521721248782275,0.451274164510932,0.911313227169849;0.561880235062444,0.249969169410276,0.376220283460707;0.241554770085929,0.955437531793689,0.228764772549632;0.912720162652781,0.142650346985794,0.423524871222756;0.825734269699093,0.512563384780399,0.273596220894793;0.444545883918906,0.971925137586938,0.444565843866667;0.982062563214574,0.648320621265659,0.627515046901424;0.578267561462169,0.614671003416509,0.534641253536576;0.234423496393930,0.469650371915959,0.385442159974304];
for i=1:2
set(e(i),'FaceColor',color(i,:));
end
hold on
ylabel('有功功率/kW/kW')
yyaxis right
ylabel('节点')
for t = 1:NT
MESS_node1(t) = find(alpha_ME1(:,t));
MESS_node2(t) = find(alpha_ME2(:,t));
end
plot(MESS_node1 , 'bv-' , 'linewidth' , 1)
plot(MESS_node2 , 'ro--' , 'linewidth' , 1)
xlabel('时间')
legend('MESS1放电功率','MESS2放电功率','MESS1接入位置','MESS2接入位置')
%% 图B5 移动储能荷电状态与接入位置的关系
E_ME = value(E_ME);
t0 = [1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11];
E_ME0 = zeros(2,20);
for t = 1:10
E_ME0(1,2*t-1) = E_ME(1,t);
E_ME0(1,2*t) = E_ME(1,t);
E_ME0(2,2*t-1) = E_ME(2,t);
E_ME0(2,2*t) = E_ME(2,t);
end
figure
yyaxis left
plot(t1,E_ME0(1,:)*10000/6 , 'r' , 'linewidth' , 1)
hold on
plot(t1,E_ME0(2,:)*10000/6 , 'b' , 'linewidth' , 1)
ylabel('荷电状态/%')
yyaxis right
ylabel('节点')
for t = 1:NT
MESS_node1(t) = find(alpha_ME1(:,t));
MESS_node2(t) = find(alpha_ME2(:,t));
end
plot(MESS_node1 , 'bv-' , 'linewidth' , 1)
plot(MESS_node2 , 'ro--' , 'linewidth' , 1)
xlabel('时间')
legend('MESS1荷电状态','MESS2荷电状态','MESS1接入位置','MESS2接入位置')
%% 图B6 灾后恢复阶段柴油发电机有功功率输出
figure
P_DG = value(P_DG);
e=bar(P_DG([1,4],:)'*10000)
color=[0.300956435005654,0.810590442462569,0.577780697646748;0.521721248782275,0.451274164510932,0.911313227169849;0.561880235062444,0.249969169410276,0.376220283460707;0.241554770085929,0.955437531793689,0.228764772549632;0.912720162652781,0.142650346985794,0.423524871222756;0.825734269699093,0.512563384780399,0.273596220894793;0.444545883918906,0.971925137586938,0.444565843866667;0.982062563214574,0.648320621265659,0.627515046901424;0.578267561462169,0.614671003416509,0.534641253536576;0.234423496393930,0.469650371915959,0.385442159974304];
for i=1:2
set(e(i),'FaceColor',color(i,:));
end
ylabel('有功功率/kW/kW')
xlabel('时间')
legend('DEG1、DEG2、DEG3','DEG4、DEG5')
%% 图5 各时段电动汽车充电桩的充放电功率
figure
P_Ech = value(P_Ech);
P_Edch = value(P_Edch);
e=bar(P_Edch'*10000 - P_Ech'*10000)
color=[0.300956435005654,0.810590442462569,0.577780697646748;0.521721248782275,0.451274164510932,0.911313227169849;0.561880235062444,0.249969169410276,0.376220283460707;0.241554770085929,0.955437531793689,0.228764772549632;0.912720162652781,0.142650346985794,0.423524871222756;0.825734269699093,0.512563384780399,0.273596220894793;0.444545883918906,0.971925137586938,0.444565843866667;0.982062563214574,0.648320621265659,0.627515046901424;0.578267561462169,0.614671003416509,0.534641253536576;0.234423496393930,0.469650371915959,0.385442159974304];
for i=1:3
set(e(i),'FaceColor',color(i,:));
end
ylabel('有功功率/kW/kW')
xlabel('时间')
legend('EVS1','EVS2','EVS3')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]王月汉,刘文霞,姚齐等.面向配电网韧性提升的移动储能预布局与动态调度策略[J].电力系统自动化,2022,46(15):37-45.