【优化调度】基于遗传算法的公交车调度排班优化的研究与实现(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、问题建模

三、遗传算法改进

四、算法实现与系统集成

五、实验结果与性能评估

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

本文对当前公交企业调度系统进行了分析,建立了公交排班的数学模型。本文基于数据挖掘分析的结果上,使用截面客流量数据对模型进行约束,得出了公交客流出行的空间分布规律。再以发车间隔为决策变量,以发车最大间隔、最小发车间隔和车辆满载率为约束条件,建立公交线路排班的数学模型,以公交公司发车成本最小和乘客等车时间成本最小为目标,建立双目标函数的数学模型。
本文设计了一种基于改进的遗传算法公交排班调度优化的解决方法,在对排班结果进行优化的过程中,本文分别在选择、交叉、变异三个阶段对算法进行改进和优化。选择的改进上是设计一个动态适应度函数,采用无放回式优良个体多复制的选择的方法。交叉的改进上是设计了新的交叉算子,交叉算子考虑了初期群体和后期群体质量会相差较大,所以使应交义函数。变异上的改进是引入了禁忌搜索算法。在预测客流量基础上,基于改进的遗传算法,模型求解确定出最优的排班时刻表和最小配车数。

基于改进遗传算法的公交车调度排班优化的研究与实现是一个很有意义的课题。公交车调度排班的优化可以有效提高公交运输系统的效率和服务质量,减少资源浪费和运营成本。下面是可能涉及的步骤和技术:

1. **问题建模**:首先需要将公交车调度排班问题形式化为数学模型。这可能包括定义目标函数(如最小化总行驶时间、最小化等待时间等)、约束条件(如车辆容量、乘客需求等)以及决策变量(如车辆的行驶路线、发车时间等)。

2. **遗传算法(GA)的改进**:传统的遗传算法可能需要在应对复杂的调度排班问题时进行改进。例如,可以采用不同的编码方式、交叉和变异操作,或者引入新的遗传算法操作符来提高搜索的效率和收敛性。

3. **目标函数设计**:设计合适的目标函数是关键的一步。这可能需要权衡不同的指标,如乘客满意度、成本效益、公交车的利用率等。

4. **约束条件处理**:在优化过程中需要处理各种约束条件,如车辆容量、乘客需求、交通限制等。可以采用合适的方法来确保生成的排班方案是可行的。

5. **实验设计与参数调优**:进行实验以评估算法的性能,并进行参数调优以获得更好的结果。可以尝试不同的参数设置和算法配置,以找到最优的调度排班方案。

6. **算法实现与系统集成**:将优化算法实现为计算机程序,并将其集成到现有的公交车调度系统中。这可能涉及与现有系统的接口设计和数据交换。

7. **性能评估与验证**:对优化后的调度排班方案进行性能评估和验证,以确保其在实际运行中能够达到预期的效果。

基于遗传算法的公交车调度排班优化的研究与实现文档,主要可以围绕以下几个方面进行撰写:

一、引言

公交车调度排班优化是公共交通系统中的一个重要问题,涉及到系统效率、成本和乘客体验等多个方面。本文旨在探讨如何通过改进的遗传算法优化公交车调度排班,以降低成本、提高服务质量。

二、问题建模

  1. 定义目标函数:公交车调度排班优化的目标通常包括最小化公交公司发车成本和乘客等车时间成本。因此,需要建立包含这两个目标的双目标函数数学模型。
  2. 确定约束条件:约束条件包括车辆容量、乘客需求、发车最大间隔、最小发车间隔和车辆满载率等。这些约束条件用于确保生成的排班方案是可行的。
  3. 选择决策变量:决策变量可以是车辆的行驶路线、发车时间等。在本研究中,以发车间隔作为决策变量。

三、遗传算法改进

  1. 适应度函数设计:设计一个动态适应度函数,以反映排班方案在不同时间段内的优劣。采用无放回式优良个体多复制的选择方法,以提高算法搜索效率。
  2. 交叉算子设计:设计新的交叉算子,考虑初期群体和后期群体质量相差较大的情况。通过合理的交叉操作,生成具有优良特性的子代个体。
  3. 变异算子改进:引入禁忌搜索算法,对变异操作进行改进。禁忌搜索算法能够避免算法陷入局部最优解,提高算法的全局搜索能力。

四、算法实现与系统集成

  1. 编码与解码:将调度方案编码成适合遗传算法处理的基因型,并设计解码方法将基因型映射到实际的调度方案。
  2. 算法实现:利用编程语言(如Python、Java等)实现改进的遗传算法。在实际应用中,需要根据具体问题进行算法调试和优化。
  3. 系统集成:将优化算法集成到现有的公交车调度系统中,实现自动化排班。这可能涉及与现有系统的接口设计和数据交换。

五、实验结果与性能评估

  1. 实验设计:进行实验以评估算法的性能。尝试不同的参数设置和算法配置,以找到最优的调度排班方案。
  2. 结果分析:对实验结果进行分析,比较不同参数和配置下的算法性能。通过对比实验,验证改进遗传算法的有效性。
  3. 性能评估:对优化后的调度排班方案进行性能评估和验证。评估指标包括发车成本、乘客等车时间、车辆满载率等。通过实际运行数据,验证优化方案在实际运营中的有效性和可行性。

六、结论与展望

  1. 结论:总结本研究的主要成果和贡献。指出改进的遗传算法在公交车调度排班优化中的有效性和优势。
  2. 展望:提出未来研究的方向和可能的技术改进。例如,可以进一步探索其他优化算法在公交车调度排班中的应用,或者结合数据挖掘和机器学习技术来提高排班方案的智能化水平。

📚2 运行结果

 

主函数代码:

clear;clc;close all
%% 载入模型参数
LoadData();

%% 参数设置
PopSize = 50;
MaxGen = 100;
plt = 1; % 运行过程是否实时画迭代优化图,默认关闭(可极大提高运行速度)

%% 初始化
Population = Init(PopSize);
ConvergenceObj = zeros(2,PopSize);
ConvergenceCon = zeros(2,PopSize);

% return
%% 开始优化求解
h = figure();
for gen = 1:MaxGen
    MatingPool = randperm(PopSize,PopSize); %父代挑选
    Offspring = GA(Population(MatingPool)); %进行交叉变异操作
    Population = EnviornmentalSelection(Population,Offspring,gen/MaxGen); %挑选子代
    RecordInfo(); % 记录迭代优化信息
end
BestSol = BestInd(end);
disp(['发车时间间隔:' num2str(BestSol.decs)])
disp(['时段发车数量:' num2str(floor(60./BestSol.decs))])
disp(['乘客总时间成本:' num2str(BestSol.Q) ', 公交公司运行费用:' num2str(BestSol.G)])
disp(['总体载客率:' num2str(100*BestSol.zaikelv) '%'])
figure
yyaxis right
plot(BestSol.decs,'-s','linewidth',2)
ylabel('发车时间间隔/分钟')
hold on
yyaxis left
plot(bus.C,'-d','linewidth',2)
ylabel('客流量')
xlabel('时段')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张文贵.基于遗传算法的公交车辆调度优化研究[D].中国地质大学(北京)[2024-04-21].DOI:CNKI:CDMD:2.2007.066661.

[2]杨海荣.基于改进遗传算法的公交车辆调度优化[J].长沙理工大学学报(自然科学版),2009,6(02):13-17.

[3]姚纯,李茂军.公交车辆优化调度问题及其单亲遗传算法[J].计算机工程与科学,2011,33(11):75-79.

[4]郑波.遗传算法在公交车辆调度优化中的应用研究[D].南京农业大学,2014. 

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值