👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
用于模拟电价的模型是一个简化形式的混合模型,如下图1所示。其根本驱动因素是天然气价格和气温。该模型在内部捕获了驱动因素与电价的关系之间的关系,以及与一天中的时间、一周中的哪一天和节假日的关系。天然气价格模型是一种简化的均值回归随机微分方程模型。温度模型是参数函数和时间序列模型的组合。
模拟的天然气和电价路径被送入调度算法,该算法计算工厂的最优调度,以产生一系列现金流,可用于计算风险现金流。
图1
详细讲解见第4部分。
电力系统负荷与电价预测优化模型研究综述
一、电力系统负荷预测的核心框架
-
基本概念与分类
负荷预测是通过历史数据挖掘负荷变化规律,建立输入输出间的非线性关系,预测未来电力需求。按时间尺度可分为:- 长期预测(10-30年):用于电网扩建规划与电源建设
- 中期预测(5-6年):指导电力交易与机组检修
- 短期预测(小时级至周级):支撑实时调度与需求响应
- 超短期预测(10分钟至1小时):优化AGC控制与频率调节
-
模型方法演进
- 统计方法:包括自回归模型(ARIMA)、指数平滑法等,计算简单但难以处理非线性特征(MAPE约2.06%)
- 机器学习:如支持向量机(SVM)、XGBoost,能捕捉复杂关系但依赖特征工程
- 深度学习:以RNN(占比52.6%)、LSTM和CNN为主,擅长处理时空特征。例如,CNN在民用建筑负荷预测中实现误差降低12%
-
场景化差异
- 民用场景:需聚合分散用电单元,考虑节假日、天气突变因素
- 工业场景:聚焦连续性生产负荷,需结合设备启停特性与电价敏感度
二、电价预测的关键挑战与方法论
-
电价特性分析
- 不确定性:受供需关系、新能源出力波动、燃料成本等多因素耦合影响
- 波动回归性:长期呈现均值回归趋势,与负荷周期性相关
- 跳跃性:极端天气或政策调整导致尖峰/负电价,如寒潮引发负荷激增
-
预测技术对比
方法类型 典型模型 优点 局限性 统计模型 ARIMA、GARCH 结构简单,适合平稳序列 难以量化突发事件影响 机器学习 随机森林、SVM 多变量处理能力强 需大量标注数据 混合模型 VMD-SSA-LSTM 分解非平稳信号,精度提升15% 计算复杂度高 概率预测 分位数回归+核密度估计 输出置信区间,支持风险管理 参数调优复杂 -
数据驱动优化
- 特征工程:引入实时电价滞后项、负荷-电价弹性系数
- 不确定性建模:采用蒙特卡洛模拟生成1000+场景,量化极端事件风险
三、优化模型的数学基础与创新应用
-
数学建模范式
- 线性规划(LP) :用于机组组合优化,全局最优但需线性化假设
- 混合整数规划(MILP) :处理离散变量(如机组启停),某案例降低运行成本18%
- 随机规划(SP) :嵌入概率密度函数,应对新能源出力不确定性
- 多目标优化:NSGA-Ⅱ算法平衡经济性(成本)、环保性(碳排放)与新能源消纳
-
机器学习融合
- 模型预测控制(MPC) :滚动优化储能充放电策略,提升收益23%
- 强化学习:通过Q-learning实现动态电价响应,用户侧负荷峰谷差缩小30%
-
典型应用案例
- 巴西东北部电网:结合风电预测与水热调度,减少水库枯竭风险21%
- 中国某省级电网:采用LSTM预测+混合整数规划,日调度误差<1.5%
四、数据治理与预处理技术
-
数据来源
- 负荷数据:包括历史负荷曲线、用户用电计划(15分钟级精度)
- 电价数据:需清洗异常值(如负电价),统一时区对齐
- 外部因素:气象数据(温度、风速)、宏观经济指标(GDP增长率)
-
预处理流程
- 归一化:消除量纲差异,如式(14)
- 模态分解:CEEMDAN算法分离负荷的日/周/季节分量
五、联合预测优化模型前沿
-
耦合机制设计
- 双向反馈:负荷预测结果修正电价模型,反之通过价格弹性调整负荷
- 时空图卷积:捕捉多节点负荷-电价的空间关联,预测误差降低2.8%
-
不确定性联合建模
- 概率密度预测:SVQR分位数回归生成负荷-电价联合分布
- 鲁棒优化:区间模型约束负荷波动范围,保障电网安全
-
实时调度创新
- 滚动优化:15分钟时间窗更新预测,调度指令延迟<5秒
- 数字孪生:镜像系统模拟1000+次/秒,动态调整机组出力
六、挑战与未来方向
-
现存问题
- 高比例新能源接入导致波动性加剧,传统模型泛化能力不足
- 电力市场改革深化,需嵌入博弈论模拟市场主体行为
-
突破路径
- 多模态学习:融合卫星遥感(光伏出力)、社交媒体(需求侧情绪)
- 量子优化:求解亿级变量组合问题,速度提升指数级
- 联邦学习:跨区域数据协同预测,保护用户隐私
结论
电力系统负荷与电价预测优化模型研究正从单一时间尺度向多时空耦合演进,从确定性优化向概率鲁棒优化转型。未来需深度融合物理模型与数据驱动方法,构建"预测-优化-控制"闭环体系,支撑新型电力系统安全经济运行。
📚2 运行结果
部分代码:
%% 每小时温度建模和模拟
% 这个例子演示了每小时干球温度拟合一个非线性温度模型。
% 温度序列被建模为两个分量的总和,一个确定性的非线性函数,
% 用来解释给定年份某一时刻的季节或预期温度,另一个随机分量,用来解释实际温度与平均值的偏差。
%% 导入数据
%数据集从先前创建的MAT-file中加载。它由一系列日期的向量和相应的历史记录温度组成。
clear
load Data\TempSeries
whos
%% 季节性成分(确定性)
% 确定性或期望的温度分量用正弦和模型建模,激励的是数据中观察到的温度和周期性的物理本质。
% 利用曲线拟合工具箱对模型参数进行估计。统计工具箱函数NLINFIT也可以用来估计模型参数。
% 计算平均值(年平均值)并将其从系列中剔除
m = mean(drybulb)
drybulb0 = drybulb - m;
% Fit double-sine model
model = fit(dates, drybulb0, 'sin2')
%% 可视化模型精度
% 用自定义图对拟合结果进行可视化分析。图中的两个轴是相连的,这极大地使数据的视觉探索。
% 还要注意,X轴上的日期tick相对于缩放和平移是动态的。
pred = model(dates) + m;
res = drybulb - pred;
fitPlot(dates, [drybulb pred], res);
disp(['平均绝对误差: ' num2str(mean(abs(res))) ' 华氏度']);
%% 分析残差中的序列相关性
% 上述图中明显的特征之一是残差不具有序列相关性。预计这是因为高于平均气温很可能跟随高于平均气温。
% 这种序列相关性可以被明确地度量。这里用AUTOCORR和PARCORR函数来显示序列的自相关和部分自相关。
figure;
subplot(2,1,1);
autocorr(res,50);
title('随机序列的序列相关性');
subplot(2,1,2);
parcorr(res(1:1000),50);
%% 利用季节AR模型对随机成分进行建模
% 可以选择对随机分量建模一个均值回复漂移SDE。
% 但是,由于季节性,我们将使用带有季节性滞后的自回归模型。
% 这里可以使用MATLAB反斜杠算子代替REGRESS函数,但这不会返回置信区间。
lags = [1 2 3 4 23 24 25 47 48 49];
Xres = lagmatrix(res, lags);
[beta, betaci, res2] = regress(res, Xres);
disp('滞后系数和置信区间');
disp([lags' beta betaci])
%% 对回归残差进行序列相关分析
%来自回归的残差现在应该大多是序列不相关的。
figure;
subplot(2,1,1);
plot(dates, res2); datetick
title('回归残差及其序列相关性');
subplot(2,1,2);
autocorr(res2(lags(end)+1:end),50);
%% 对残差拟合一个分布
% 由于残差大多是不相关的,因此可以将它们建模为独立的从适当的分布中提取的。
% 一个t位置尺度分布可以显示出很好的拟合性。
PD = fitdist(res2, 'tlocationscale');
%% 模型总结
% 温度模型现在可以定义为,
%
% *平均气温' m '
% *正弦模型'模型'
% *回归参数'β '
% *自相关滞后'滞后'
% *剩馀概率分布PD
% *可选样本前数据( 回归温度的最后一次观测值 )
tempModel = struct('m', m, 'sinmodel', model, 'reglags', lags, 'regbeta', beta, 'dist', PD, 'presample', res(end-lags(end)+1:end));
save SavedModels\TemperatureModel.mat -struct tempModel
clearvars -except tempModel dates drybulb
%% 仿真模型
% 我们现在可以对这个模型进行2009年的模拟,并将模拟值与2009年的观测数据进行比较。
% 注意我们已经捕获了我们模型中的相关特征。
newDates = dates(end-365*24+1:end);
simTemp = simulateTemperature(tempModel, newDates, 1);
%% 可视化仿真结果
ax1 = subplot(2,1,1);
plot(newDates, drybulb(end-365*24+1:end))
title('实际温度');
ax2 = subplot(2,1,2);
plot(newDates, simTemp);
title('模拟温度');
linkaxes([ax1 ax2], 'x');
dynamicDateTicks([ax1 ax2], 'linked');
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]周佃民,赖菲,刘亚安,王庆,刘云国.电力系统负荷预测与电价预测[J].继电器,2000(10):31-33.