💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
随着电动汽车的普及,电动汽车充电对电网的影响越来越大。为了更好地适应多时段动态电价,优化电动汽车的有序充电策略至关重要。以下是一些可能的优化策略:
1. 考虑电价波动:根据不同时段的电价波动情况,制定充电策略。在电价较低的时段进行充电,避开电价高峰时段,以降低充电成本。
2. 考虑用电需求:结合用户的用电需求,合理安排电动汽车的充电时段,避免与家庭其他大功率电器同时使用,以免造成用电负荷过大。
3. 考虑充电速度:根据电动汽车的电池容量和充电设备的功率,合理安排充电时长,以最大限度地利用充电设备的充电效率。
4. 考虑电网负荷平衡:在电网负荷高峰时段,避免大量电动汽车同时充电,采取分时段、分区域的充电策略,以平衡电网负荷。
5. 考虑可再生能源利用:结合可再生能源的发电情况,合理安排电动汽车的充电时段,优先利用可再生能源进行充电,以降低对传统能源的依赖。
通过以上优化策略,可以更好地适应多时段动态电价,提高电动汽车的充电效率,降低充电成本,同时减少对电网的影响,实现电动汽车的有序充电。
目前有文献对电动汽车充电负荷建模进行了大量研究,其中王姝凝等人采用网格选取法对居民区
汽车充电进行有序调控[9],孔祥玉等人分析了在分时电价环境下的用户需求响应情况[10]。但静态调控策略在面对多变的负荷情况时,引导效率容易受到限制。电动汽车渗透率的提升会威胁到电网的稳定运行,但如果将需求响应机制结合到充电负荷的引导策略中,不仅可减轻电网的负担,也可减轻用户的使用成本,实现双赢目标[11-13]。所以研当前国内的汽车动力电池主要以三元锂电池为主,其充电过程为 “恒流-恒压”两阶段模式,充电早期,电流不变,电压不断提升,达到预定值后恒定,然后充电电流不断衰减至固定值。其充电功率曲线如图 1 所示,起始和结束阶段较为短暂,可以将整个充电过程考虑为恒功率特性充电过程。
分时峰谷电价是电网段调节用户侧需求的有效途径,电网运行商根据当地的基本负荷曲线来划分
峰谷电价,电价的改变将会影响用电需求,从而引导充电负荷的变化,其目的是为了降低负荷的峰谷差,达到削峰填谷的效果。
针对我国用电负荷呈现双峰形态,典型的分时电价划分原则是将午、晚的基础用电高峰期划分为
电价峰期,将夜晚的用电谷期划为电价谷期,其他时间为电价平期。
基于多时段动态电价的电动汽车有序充电策略优化研究
一、多时段动态电价的定义及实施现状
多时段动态电价(Dynamic Pricing)是一种根据电力供需关系实时调整电价的机制,通常将一天划分为多个时段(如峰、平、谷),通过价格信号引导用户调整用电行为。其核心目标是平衡电网负荷、降低运营成本,并促进可再生能源消纳。例如,中国《关于进一步完善分时电价机制的通知》要求拉大峰谷电价差,并引入动态调整机制,以适配季节性用电差异。欧洲国家如德国通过动态电价结合智能电表,使家庭电费节省达34%。
实施动态电价需配套技术支撑:
- 智能电表:实时记录用电数据并传输至电网运营商;
- 机器可读电价标准:加州等地区已要求电价信息标准化,便于第三方软件自动化响应;
- 用户教育:需简化参与流程,降低用户认知门槛。
二、电动汽车有序充电策略的基本原理
有序充电策略的核心是通过经济或技术手段引导充电行为,在满足用户需求的前提下实现电网负荷优化。其作用包括:
- 削峰填谷:将充电需求转移至低谷时段,降低电网峰谷差;
- 成本节约:利用分时电价降低用户充电费用;
- 电压稳定:减少充电负荷对配电网电压的冲击。
具体实现方式包括:
- 分时电价引导:设置峰谷电价差,激励用户主动调整充电时间;
- 优先级控制:根据车辆剩余电量、离开时间等参数动态调整充电优先级;
- 功率调节:限制高峰时段快充功率,优先使用慢充模式。
三、多时段动态电价对有序充电策略的影响机制
- 价格信号驱动:电价波动直接影响用户充电决策。例如,低谷时段电价下降可吸引用户集中充电,使负荷曲线趋于平滑。
- 双目标优化:动态电价策略需同时优化电网侧(如负荷波动最小化)和用户侧(充电成本最小化)。研究表明,该策略可使峰谷差降低58%,用户成本减少21%-28%。
- 电网安全提升:通过动态电价调控,配电网电压偏移率可修正3.61%,网损率降低2.77%。
四、现有优化模型分类
模型类型 | 特点 | 应用案例 |
---|---|---|
多目标优化模型 | 兼顾电网负荷波动和用户成本,目标函数包含峰谷差、均方差等 | 采用鸡群算法优化分时电价引导策略,实现负荷曲线平滑 |
混合整数规划模型 | 解决充电站选址、时段划分等离散决策问题,适合大规模优化 | 通过线性化DistFlow潮流方程,转化为混合整数二次规划模型 |
元启发式算法模型 | 适用于非线性、高维问题,如遗传算法、粒子群算法 | 精英变异遗传算法优化充电时间,收敛速度提升30% |
强化学习模型 | 处理不确定性(如充电需求、可再生能源波动),通过试错学习最优策略 | 深度强化学习用于实时调度,降低充电成本并减少未满足需求的车辆数量 |
五、数学建模方法的应用
-
混合整数规划(MIP):
- 应用场景:充电站规划、时段属性划分(峰/平/谷)。
- 优势:精确处理离散变量,如充电桩的启停状态。
- 案例:通过大M法线性化非线性约束,将充电负荷转移问题转化为可求解的混合整数二次规划模型。
-
强化学习(RL):
- 应用场景:实时调度、多智能体协同优化。
- 优势:免模型特性适合动态环境,如电力-交通融合网的交互不确定性。
- 案例:最大熵强化学习优化充电功率和发电机组出力,累计成本降低15%。
六、遗传算法与粒子群算法的性能对比
指标 | 遗传算法(GA) | 粒子群算法(PSO) |
---|---|---|
全局搜索能力 | 通过交叉和变异跳出局部最优,适合多目标优化 | 易陷入局部最优,需结合遗传操作改进(如混合算法) |
收敛速度 | 较慢,计算复杂度随问题规模指数增长 | 较快,结构简单,适合单目标优化 |
适用场景 | 大规模电动汽车群的充电调度(如1000辆以上) | 中小规模问题,如IEEE 33节点配电网的充电站优化 |
改进方向 | 动态概率调整交叉/变异率,结合精英选择策略(如NSGA-II) | 引入惯性权重调整、社会学习机制,增强局部搜索能力 |
七、实际应用案例
-
中国:
- 东北地区:基于分时电价的多时段动态策略使充电成本降低21.17%,电网峰谷差缩减58%。
- 江苏充电站:深度强化学习模型实时调度1000辆EV,未满足需求车辆减少30%。
-
欧洲:
- 德国:动态电价结合智能电表,家庭年均电费节省1347欧元。
- 北欧国家:通过实时电价引导,风电消纳率提升12%。
-
日本:
- 实证项目:动态定价结合充电时机推荐,实现日间负荷转移率18%。
八、未来研究方向
- 精细化时段划分:研究时段划分粒度(如15分钟级)对引导效率的影响。
- 公平性设计:避免低收入群体因技术门槛无法受益,需补贴或差异化定价。
- 车网互动(V2G) :探索电动汽车反向供电潜力,提升电网灵活性。
- 多能源协同:耦合光伏、储能系统,构建光-储-充一体化优化模型。
📚2 运行结果
2.0 蒙特卡洛生成电车负荷
2.1 基础场景,无电动汽车
2.2 场景2:无电动汽车无序充电
2.3 场景3:电动汽车有序充电
粒子群算法求解
部分代码:
%% 粒子群算法优化求解
MaxIt=1500; % 迭代次数
nPop=650; % 种群规模
nVar = sum(sum(Tap));% 决策变量数量
nVar1 = [0; sum(Tap,2)];% 各个电动车的决策变量数量(实际上就是每辆车的可调度时段数)
VarMin = zeros(1,nVar);% 决策变量下限
VarMax = EV_features.S_char*ones(1,nVar);% 决策变量上限
% 调用粒子群算法进行优化求解
[bestPosition, fitValue ,BestCost] = PSOFUN(@objective2,nVar,VarMin,VarMax,MaxIt,nPop);
% 变量还原(把原本 电动车数*调度时段数 的决策变量转变为 电动车数*24h 的电动车逐时充电功率矩阵,方便后续计算)
Load_EV_tran = zeros(car_number,48);
for i=1:car_number
Load_EV_tran(i,EV_features.Starttime(i):EV_features.Endtime(i)+24)=bestPosition(sum(nVar1(1:i))+1:sum(nVar1(1:i+1)));
end
Load_EV = (Load_EV_tran(:,1:24)+Load_EV_tran(:,25:48));
% 计算各节点电动汽车充电需求
P_L_EV = zeros(33,24);
for i=1:33
P_L_EV(i,:) = sum(Load_EV((i-1)*car_number/33+1:(i-1)*car_number/33+car_number/33,:))/1000;
end
% 计算实际的总体负荷
mpc=case33bw;
P_L_act = sum(Power_load.*mpc.bus(:,3))+sum(P_L_EV);
% 验证是否满足潮流约束并计算最优潮流
V = zeros(33,24);% 逐时记录电压
P_loss = zeros(1,24);% 逐时记录网损
for t=1:T
mpc=case33bw;
mpc.bus(:,3)=Power_load(t).*mpc.bus(:,3);% 当前时刻各节点基础负荷
mpc.bus(:,3)=mpc.bus(:,3)+P_L_EV(:,t);% 加上电动汽车充电渡河
[result,sucess]=runopf(mpc,mpoption('OUT_ALL',0,'VERBOSE',0,'PF_ALG',3));% matpower计算最优潮流
V(:,t) = result.bus(:,3);% 当前时刻各节点电压幅值
P_loss(t) = sum(result.branch(:,14)+result.branch(:,16));% 当前时刻系统网损
if sucess == 1% 判断是否满足潮流约束
% disp('当前场景满足潮流约束!')
elseif sucess == 0
disp('当前场景不满足潮流约束!')
end
end
%% 优化结果可视化
[fun,C_1,C_2] = objective2(bestPosition);
C_1_0 = sqrt((sum((P_L_base*1000-mean(P_L_base)*1000).^2))/24);
C_2_1 = sum(sum(P_EV_0).*csell);
disp('===============================================')
disp('%% 场景3结果输出 %%')
disp('===============================================')
disp(['总目标函数的值为 :',num2str(fun)])
disp(['基础负荷波动的标准差为 :',num2str(C_1_0)])
disp(['总体负荷波动的标准差为 :',num2str(C_1)])
disp(['考虑动态电价电车用户的充电费用为:',num2str(C_2)])
disp(['不考虑动态电价电车用户的充电费用为:',num2str(C_2_1)])
disp(['总体负荷曲线的峰值为 :',num2str(max(P_L_act*1000))])
disp(['总体负荷曲线的谷值为 :',num2str(min(P_L_act*1000))])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈嘉德,徐海博,孙瑞雪等.基于多时段动态电价的电动汽车有序充电策略优化[J].东北电力技术,2023,44(02):40-46.