💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于氨储能技术的电–氨耦合风–光–火综合能源系统双层优化调度研究综述
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
作为一种零碳能源,氨具有与普通燃煤相当的热值(18.72MJ/kg),且与氢气相比,氨气液化条件
更低(0.9MPa 或-33℃),运输和储存经济性、安全性更优[12]。电转氨技术(power-to-ammonia,P2A)在电制氢后通过合成氨反应实现电能到氨气的转化,是解决氢气储运难题、实现可再生能源大规模存储的有效途径。目前此方面研究主要集中在电转氨技术和氨的利用方面。电转氨方面,文献[13]分析了电转氨技术的能耗水平;文献[14]比较了以“绿氢”为原料的氢、氨和甲醇的生产和储存成本进行,并指出氨的成本最低,较氢和甲醇分别低 31%和18%。在氨利用方面,近年来研究者们提出燃煤锅炉掺氨燃烧以降低碳排放的思路,这对促进我国以煤为主能源系统的减碳极具潜力。本文作者[15]通过热力计算验证了大型燃煤锅炉掺氨燃烧降低碳排放的可行性;文献[16-17]的分析表明,氨–煤混燃技术促进我国电力系统减碳目标的达成。
电转氨耦合风–光–火综合能源系统的基本结构如图 1 所示。在本文所述的系统中,电负荷由风
机、光伏、火电机组和热电联产机组提供;热负荷由热电联产机组和制氨工厂提供。电转氨系统包含电解池、变压吸附(pressure swing adsorption,PSA)制氮设备和制氨工厂。
针对电转氨耦合风–光–火综合能源系统电力网络中各元件的协调运行,以及系统的电–热调度
优化,本文构建了电转氨耦合风–光–火综合能源系统的双层优化调度模型,其结构如图 2 所示。
基于氨储能技术的电–氨耦合风–光–火综合能源系统双层优化调度研究综述
一、氨储能技术的基本原理与核心优势
-
基本原理
氨储能技术基于氨的可逆分解与合成反应(N₂ + 3H₂ ↔ 2NH₃),通过电解水制氢与空气分离制氮,结合哈伯-博施法合成绿氨,实现电能到化学能的转化。具体流程包括:- 储能阶段:利用风光等可再生能源的富余电力电解水制氢(H₂),并通过变压吸附(PSA)制氮(N₂),在高温高压下合成氨(NH₃)储存。
- 释能阶段:储存的氨可通过燃烧发电、燃料电池或分解为氢气再供能。例如,在燃煤机组中掺氨燃烧(掺氨比例可达20%以上),或通过氨燃料电池直接发电。
-
技术优势
- 高能量密度:液氨体积能量密度达13.6 MJ/L,1 L液氨相当于4.9 L高压氢(35 MPa),储运成本仅为氢气的1%。
- 低储运门槛:氨在-33℃或0.9 MPa下即可液化,储罐载氨量可达30吨,单次运氢量提高10倍以上,运输成本低至0.001元/kg·km。
- 零碳特性:绿氨全生命周期无碳排放,可作为煤电掺烧燃料,减少CO₂排放。
- 安全性高:氨的爆炸极限(15%~28%)较氢气更窄,储存和运输风险更低。
二、电转氨耦合系统的架构与运行机制
-
系统组成
- 电源侧:风电、光伏、火电(含热电联产机组)提供基础电力。
- 电转氨(P2A)系统:包括电解池、PSA制氮设备、合成氨反应器,用于将富余电力转化为氨能。
- 储能与用能侧:液氨储罐、掺氨燃烧锅炉、氨燃料电池,实现跨季节储能与灵活供能。
-
运行流程
- 电力分配:风光发电优先满足电负荷需求,富余电力通过P2A系统合成氨储存。
- 热力协同:合成氨反应释放的热量(350~550℃)可部分用于供热,提高能源综合利用效率。
- 调峰与应急:在用电高峰期或风光出力不足时,通过氨燃料电池发电或掺氨燃烧补充电力缺口。
三、风–光–火综合能源系统的多能互补架构
-
核心组件
- 风力与光伏发电:承担基荷与调峰功能,出力波动通过储能系统平抑。
- 火电与热电联产:提供稳定电力与热力,深度调峰时掺氨燃烧降低煤耗。
- 储能设备:包括电池储能、抽水蓄能及氨储能,实现跨时间尺度能量平衡。
-
智能控制机制
- 动态调度:基于风光出力预测、负荷需求及氨储能状态,实时优化电力分配路径。
- 协调运行指标:综合燃煤机组利用率、风光消纳率、氨能转化效率,评估系统经济性与稳定性。
四、双层优化调度模型的构建与求解
-
模型结构
- 上层目标:最大化协调运行指标(如风光消纳率、燃煤机组稳定性)。
- 下层目标:最小化系统总成本,包括风光运行成本、火电燃料成本、氨合成成本及碳排放惩罚。
-
数学建模
- 约束条件:
- 电力平衡:∑(风光出力 + 火电出力 + 氨能发电)= 电负荷 + 电解制氢功耗。
- 氨能转化:m₃(t) = η_P2A × P_P2A(t) / σ,其中σ为合成单位氨的能耗(约10~12 kWh/kg)。
- 碳排放限制:火电掺氨后CO₂排放量 ≤ 基准排放 × (1 - 掺氨比例)。
- 求解方法:采用遗传算法、粒子群优化等智能算法处理双层非线性规划问题。
- 案例验证
- 新疆某地场景:引入P2A后,风光消纳率提升15%~20%,系统总成本降低1.06%~1.74%,碳排放减少2.11%~2.81%。
五、应用场景与协同运行机制
-
典型场景
- 夜间低谷期:富余风电通过P2A合成氨储存,同时释放热量供热。
- 日间波动期:光伏出力波动由氨能平抑,降低火电调峰压力。
- 高峰负荷期:储存的氨通过燃料电池或掺烧补充电力缺口,减少火电煤耗。
-
协同机制
- 经济性优化:通过双层模型动态分配风光电力至电网或P2A系统,平衡短期成本与长期储能收益。
- 环保性提升:掺氨燃烧使火电机组碳排放强度降低10%~30%,助力“双碳”目标。
六、技术挑战与发展方向
-
现存问题
- 高能耗:传统哈伯-博施法合成氨能耗高(约30~40 GJ/t),需开发低温低压催化剂。
- 系统集成:风光出力波动与P2A设备启停的动态匹配仍需优化。
-
未来趋势
- 绿氨规模化:结合风光制氢–合成氨一体化项目,实现年产百万吨级绿氨。
- 多能联储:将氨储能与电池、氢能互补,构建“风–光–火–氨–氢”综合能源网络。
七、现有研究案例
- 华北电力大学模型:通过双层优化调度,实现风光消纳率提升20%,火电掺氨比例达15%。
- 清华大学研究:提出电–氨–热协同调度策略,系统能效提升至50%以上。
- 国际实践:丹麦H2RES项目验证了氨储能在风光波动平抑中的可行性,储能效率达65%。
总结
氨储能技术在风–光–火综合能源系统中展现出显著的调峰、降碳与经济性优势。通过电转氨耦合与双层优化调度,不仅能提高可再生能源渗透率,还可推动传统火电低碳转型。未来需进一步突破合成氨催化剂技术、优化多能协同控制策略,以实现大规模商业化应用。
📚2 运行结果
部分代码:
%% 风机
Ewind = sdpvar(1,24);Ewindcur = sdpvar(1,24);
%% 电制氢
nP2H = 0.85; %电制氢效率 电能J转氢气热能J
EP2Hmax = 1000*350;%kW 电转气耗电功率上限
EP2H = sdpvar(1,24); %耗电kW
mh2P2H =sdpvar(1,24); %制氢kg
%% 燃气轮机
ECHPmax = 1000*350; %燃气轮机电出力上限kW
HCHPmax = 1000*300; %燃气轮机热出力上限kW
ditaEHCHPmax = 1000*100; %燃气轮机总功率爬坡上限kW
vch4CHP = sdpvar(1,24);%体积:标准立方米
% 合成氨工厂
ENH3max=1000*100;ENH3min=0;nE2NH3=1.6;nH22NHE=0.5;
ditaENH3max = 1000*50;
%% 火电机组
EMmax = 1000*200;%kW %火电机组最大发电功率 kW
EMmin = 1000*25;%kW %火电机组最小发电功率 kW
ditaEMmax = 1000*100;%kW %爬坡
ditaEMmin =-1000*100;%kW %爬坡
mEM = sdpvar(1,24); %煤耗 kg
%% 天然气管网
VGgrid = sdpvar(1,24);
%% C02封存
mco2Storage = sdpvar(1,24); M =1e8;
%电制氢
EP2Hmin<=EP2H,EP2H<=EP2Hmax,
m2qH2*mh2P2H==nP2H*EP2H*3.6e6, ];
% 合成氨工厂
C=[C, ENH3min<=ENH3 ,ENH3 <=ENH3max,
ditaENH3min<=ENH3(2:24)-ENH3(1:23),
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]袁文腾,陈亮,王春波,等.基于氨储能技术的电转氨耦合风–光–火综合能源系统双层优化调度[J].中国电机工程学报,2023,43(18):6992-7003.DOI:10.13334/j.0258-8013.pcsee.223152.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取