计及风光不确定性的基于IGDT的综合能源系统优化调度研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

计及风光不确定性的基于IGDT的综合能源系统优化调度研究

1. IGDT理论基础及其在能源系统中的应用

2. 综合能源系统的组成与优化调度目标

3. 风光不确定性对能源系统的影响机制

4. 基于IGDT的优化调度模型构建

4.1 模型设计要点

4.2 算法与求解

5. 现有研究案例分析

6. 研究挑战与未来方向

7. 结论

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码、数据、文章下载


💥1 概述

文献来源:

本文代码还包含光热电站模型,有需要学习光热电站的也可以考虑此代码,注释详细,模块清晰。重要的是,本代码还考虑了综合能源风光出力的不确定性,构建了基于信息间隙决策理论的综合能源系统优化调度模型,分析了IGDT鲁棒模型以及机会模型,且不确定参数可以自行调节,从而进行灵敏度分析!
详细文章讲解见第4部分。

计及风光不确定性的基于IGDT的综合能源系统优化调度研究

1. IGDT理论基础及其在能源系统中的应用

IGDT(信息间隙决策理论)是一种非概率、非模糊的优化方法,其核心是通过信息间隙参数(ε)量化不确定性的容忍范围,并构建鲁棒性(风险规避)和机会性(风险追求)两种策略。

  • 鲁棒性模型:以最大化系统对不确定参数的容忍范围为目标,确保在最坏情况下仍能满足预设目标(如成本控制、能源可靠性)。例如,当风光出力低于预测值时,系统仍能通过储能或备用电源维持稳定。
  • 机会性模型:将不确定性视为有利因素,追求最小化不确定度以获得更高收益。例如,在风光出力高于预期时,利用过剩能源降低运行成本或参与市场交易。

IGDT的核心要素包括系统模型、不确定模型和性能要求。系统模型描述决策变量(如设备出力)与不确定变量(如风光出力)的关系,通常以函数形式 B(q,u)B(q,u) 表示;不确定模型则通过包络约束或椭球模型定义波动范围。


2. 综合能源系统的组成与优化调度目标

综合能源系统整合电、热、冷、气等多种能源形式,包含供能网络、耦合设备(如热电联产机组、电转气装置)、储能单元及终端用户。其优化调度目标包括:

  1. 经济性:最小化运行成本,涵盖燃料费用、设备维护、能源交易等。
  2. 低碳性:通过阶梯碳交易机制或碳捕集技术(CCS)降低碳排放。
  3. 可靠性:确保供需平衡,应对风光出力波动对系统频率、电压的影响。
  4. 灵活性:利用储能、需求响应等资源实现多时间尺度协同优化。

3. 风光不确定性对能源系统的影响机制

风光出力的随机性、间歇性导致以下问题:

  • 功率平衡风险:预测误差可能导致频率偏移和电压波动。例如,风电功率预测误差的标准偏差可达额定容量的8%~12%。
  • 调峰压力:风光出力与负荷峰谷不匹配时,需依赖火电深度调峰或储能补偿,增加成本。
  • 市场风险:风光不确定性需增加备用容量,推高市场交易成本。

IGDT通过定义不确定参数的波动范围(如实际出力与预测值的偏差±α),量化其对系统的影响,并生成鲁棒或机会调度策略。


4. 基于IGDT的优化调度模型构建
4.1 模型设计要点
  • 目标函数:以经济成本最小化或风光消纳最大化为核心,结合碳交易收益等目标。例如:

    其中,Fnet​ 为电网交互成本,Fgas为燃气成本,Feq为设备运维成本。

  • 约束条件:包括功率平衡、设备出力限制、储能充放电效率等。例如,电解槽的输入功率需满足:

  • 不确定参数处理:对风光出力定义鲁棒性偏差因子(μ_ro)和机会性偏差因子(μ_op),例如±2%~12%的波动范围。
4.2 算法与求解
  • 多目标优化采用改进型ε-约束算法或NSGA-II,平衡经济性与鲁棒性。
  • 对于复杂系统(如含氢储能的微电网),结合CVaR(条件风险价值)量化极端风险,并采用模型预测控制(MPC)进行滚动优化。

5. 现有研究案例分析
  1. 虚拟电厂调度:引入CCS-P2G耦合运行模式,风光消纳率达100%,运行成本降低12.3%。
  2. 碳捕集电厂优化:通过阶梯碳交易模型,CO2排放量降低15%,风光消纳率提升20%。
  3. 光热电站多源调度:利用IGDT处理光照强度不确定性,系统经济性提升8%~12%。
  4. 独立直流微电网:考虑风光荷多重不确定性,鲁棒策略使调度成本波动控制在±5%以内。

6. 研究挑战与未来方向
  1. 动态间隙参数调整:现有模型多采用固定ε值,未来需结合实时数据动态优化。
  2. 多类型不确定性耦合:风光出力与负荷需求、市场电价等参数的关联性需更精细建模。
  3. 硬件协同优化:结合新型储能(如氢储能)和柔性负荷(如电动汽车),提升系统灵活性。
  4. 多时间尺度协同:日前-日内-实时调度的协同机制需进一步探索,以应对短期波动与长期规划的矛盾。

7. 结论

基于IGDT的综合能源系统优化调度方法,通过鲁棒性与机会性策略的平衡,有效应对了风光不确定性的挑战。其在经济性、低碳性、可靠性等方面的优势已在虚拟电厂、碳捕集系统等案例中得到验证。未来研究需聚焦动态建模、多目标协同及新技术集成,以支撑高比例新能源系统的可持续发展。

📚2 运行结果

 这里仅展现部分结果图。

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]于雪菲,张帅,刘琳琳等.基于信息间隙决策理论的碳捕集电厂调度[J].清华大学学报(自然科学版),2022,62(09):1467-1473.DOI:10.16511/j.cnki.qhdxxb.2022.26.008.

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值