💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
摘要:在“双碳”背景下,为有效提高综合能源系统(IES)的能源利用率,减少碳排放量,同时提升系统运行的灵活性,提出一种基于合作博弈的IES优化运行模型。首先构建IES框架,针对电转气(P2G)、碳捕集、燃气轮机、热储能等设备进行建模;其次考虑系统内各主体之间存在协同合作的可能,将系统内各运营主体分为三方构建合作联盟,阐述能源互补提高整体收益的原理;最后建立基于合作博弈的IES协同优化调度模型,利用Shapley值法对合作剩余按贡献进行分配。该文通过内蒙古地区某综合能源系统实例仿真分析,验证了所提出的策略能有效减少各合作主体的运行成本及合作联盟的运行总成本,促进联盟内多主体开展合作,同时有效提升系统内风电消纳能力,减少系统碳排放量,可为电力系统低碳经济调度提供理论参考。
基于合作博弈的综合能源系统电-热-气协同优化运行策略
一、合作博弈理论在综合能源系统中的应用框架
-
理论核心与关键概念
合作博弈理论以联盟(参与者集合S)和特征函数(v(S)描述联盟收益)为基础,强调通过多主体合作实现整体收益最大化。与非合作博弈不同,合作博弈允许参与者形成联盟并共享策略,适用于电-热-气综合能源系统(IES)中电网、热网、气网等主体的协同优化。- 联盟形成机制:各能源主体通过互补利用资源(如电力系统利用燃气机组调峰、热网与电锅炉协同供能)提升整体效率。
- 收益分配方法:Shapley值法被广泛用于公平分配合作剩余,其计算基于边际贡献,确保参与者收益与贡献成正比。例如,内蒙古某IES案例中,三方合作联盟通过Shapley值分配收益,总运行成本降低12.3%。
-
模型构建与求解算法
- 纳什议价模型:将多主体优化问题分解为可线性化的子问题,通过分布式算法(如ADMM)迭代求解。
- 多目标优化:结合经济性(成本最低)与环保性(碳排放最小),采用改进NSGA-Ⅱ算法生成Pareto前沿集,平衡不同目标间的权衡。
- 分布式架构:因电、气、热分属不同管理主体,采用去中心化或弱中心化架构,结合Benders分解、ADMM等算法提升求解效率。
二、电-热-气综合能源系统结构与协同优化目标
-
系统组成与耦合设备
IES由电力、天然气、热力网络及耦合设备构成,典型结构包括:- 能源转换设备:热电联产(CHP)、电转气(P2G)、电锅炉(EB)、燃气锅炉(GB)。
- 储能装置:储电(EES)、储热(TES)、储气(GES),用于平抑供需波动。
- 可再生能源:风电、光伏与燃气机组互补,缓解新能源波动性。
-
协同优化目标
- 经济性:最小化系统总成本,包括设备运行费用、燃料成本及储能损耗。
- 环保性:降低碳排放,通过碳捕集与封存(CCUS)及可再生能源消纳实现。例如,绿证-碳交易模型使内蒙古某IES碳排放减少18.6%。
- 能效提升:通过供需双侧协同(如需求响应)提高综合能效,Charnes-Cooper变换用于线性化能效目标。
- 风险控制:分配个体风险责任,结合鲁棒优化应对源荷不确定性。
三、关键技术及挑战
-
建模与求解技术
- 动态特性建模:热网与气网的管道储能效应需用时滞偏微分方程描述,离散化后引入混合整数线性规划(MILP)。
- 不确定性处理:随机优化(场景法)、鲁棒优化(最坏情况分析)及分布鲁棒优化(模糊集描述)分别用于不同风险偏好场景。
- 多能流协调算法:基于高斯回代的ADMM变体实现电-气-热子系统分布式协同,收敛速度较传统方法提升30%。
-
挑战与未来方向
- 模型复杂度:耦合设备增多导致求解规模指数级增长,需发展降维技术(如变量聚类)。
- 不确定性传播:电力系统波动通过P2G设备影响气网压力安全域,需建立动态可行域评估机制。
- 利益分配公平性:Shapley值计算复杂度高(N!级),需改进采样近似方法(如蒙特卡洛法)降低误差。
- 政策协同:可再生能源配额制(RPS)与碳交易机制需纳入博弈框架,激励主体参与。
四、典型应用案例
-
内蒙古某IES协同优化
- 合作模式:三方联盟(可再生能源商、碳捕集电厂、燃气热电厂)通过P2G-CCUS联合运行,风电消纳率提升至92%。
- 收益分配:Shapley值法分配合作剩余,各主体成本降幅达8%~15%。
-
园区级多主体博弈
- 主从博弈架构:上层运营商优化能源价格,下层园区负荷聚合商响应需求,总利润提升14.7%。
- 风险规避策略:基于合作博弈的现货市场模型降低电价波动风险,预期损失减少21%。
-
绿证-碳交易交互模型
- 多市场协同:绿证交易激励可再生能源消纳,碳交易约束燃气机组排放,双重机制下系统碳排放强度下降0.28吨/MWh。
五、总结与展望
合作博弈理论为IES多主体协同优化提供了数学基础,但其应用仍面临模型复杂度、分配公平性及政策适配等挑战。未来研究可聚焦以下方向:
- 智能算法融合:结合强化学习与博弈论,实现动态联盟形成与实时优化。
- 跨系统安全评估:发展多能流静态安全域分析方法,量化耦合系统脆弱性。
- 区块链技术集成:通过智能合约自动执行Shapley值分配,提升交易透明度。
通过上述策略,综合能源系统可在保障经济性与可靠性的同时,推动“双碳”目标下的能源结构转型。
📚2 运行结果
%% 表2 系统内各单元收益和成本结果对比
disp('==================表2 系统内各单元收益和成本结果对比=====================')
C_R=value(C_R)
C_Q=value(C_Q)
C_F=value(C_F)
C_CS=value(C_CS)
C_Gas=value(C_Gas)
C_P2G=value(C_P2G)
C_Buy=value(C_Buy)
C_net=value(C_net)
C_SE=value(C_SE)
C_SC=value(C_SC)
disp('====================总成本====================')
F=value(F)
%% 表2 系统内各单元收益和成本结果对比
disp('==================表2 系统内各单元收益和成本结果对比=====================')
C_R=value(C_R)
C_Q=value(C_Q)
C_F=value(C_F)
C_CS=value(C_CS)
C_Gas=value(C_Gas)
C_P2G=value(C_P2G)
C_Buy=value(C_Buy)
C_net=value(C_net)
C_SE=value(C_SE)
C_SC=value(C_SC)
disp('====================总成本====================')
F=value(F)
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]祝荣,任永峰,孟庆天等.基于合作博弈的综合能源系统电-热-气协同优化运行策略[J].太阳能学报,2022,43(04):20-29.DOI:10.19912/j.0254-0096.tynxb.2022-0112.