【机器手臂】KR10 R1100-2型号的机器手臂运动学与动力学的学习(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

机器手臂运动学与动力学学习报告:以KR10 R1100-2型号为例(使用MATLAB实现)

一、引言

二、机械臂的DH模型建立

三、两关节轴坐标变换矩阵的推导

四、KR10 R1100-2运动学方程的计算

五、雅可比矩阵的计算

六、结论与展望

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

机器手臂运动学与动力学学习报告:以KR10 R1100-2型号为例(使用MATLAB实现)

一、引言

本报告旨在详细阐述KR10 R1100-2型号机器手臂的运动学与动力学分析过程,重点通过MATLAB编程实现其运动学方程的计算、坐标变换矩阵的推导以及雅可比矩阵的求解。

通过这一过程,我们能够深入理解机器手臂的运动特性,为后续的轨迹规划、控制算法设计提供理论基础。

二、机械臂的DH模型建立

在进行运动学分析之前,首先需要建立机械臂的Denavit-Hartenberg(DH)模型。DH模型是一种标准化的方法,用于描述机器人手臂各连杆之间的相对位置和姿态关系。

具体步骤如下:

  1. 定义坐标系:为机械臂的每个连杆定义一个坐标系,通常选择关节旋转轴或平移方向作为坐标系的某个轴。

  2. 确定DH参数:包括连杆长度(a)、连杆偏移(d)、关节角(θ)和连杆扭转角(α)。这些参数描述了相邻坐标系之间的相对位置和姿态。

  3. 构建变换矩阵:利用DH参数,构建从上一坐标系到当前坐标系的齐次变换矩阵。

三、两关节轴坐标变换矩阵的推导

坐标变换是运动学分析的核心

从坐标系i-1到坐标系i的变换可以通过以下四个步骤实现:

  1. 绕Xi-1轴旋转:旋转角度为α(i-1),表示连杆i-1的扭转角。

  2. 沿Xi-1方向移动:移动距离为a(i-1),表示连杆i-1的长度。

  3. 绕Zi-1轴旋转:旋转角度为θ(i),表示关节i的旋转角。

  4. 沿Zi-1轴移动:移动距离为d(i),表示关节i的偏移量。

根据上述步骤,可以推导出一般的两关节轴坐标变换矩阵T(i-1,i)。在MATLAB中,我们可以通过编写transform函数来实现这一变换矩阵的计算。

四、KR10 R1100-2运动学方程的计算

基于DH模型和坐标变换矩阵,我们可以计算KR10 R1100-2机器手臂的运动学方程。

具体步骤如下:

  1. 定义DH参数表:根据KR10 R1100-2的实际结构,填写各连杆的DH参数。

  2. 构建整体变换矩阵:通过连乘各相邻坐标系之间的变换矩阵,得到从基座坐标系到末端执行器坐标系的整体变换矩阵T(0,n)。

  3. MATLAB实现:在MATLAB中编写KR10R1100_2.m脚本文件,实现上述计算过程,并输出末端执行器的位置和姿态。

五、雅可比矩阵的计算

雅可比矩阵是描述机械臂末端执行器速度与关节速度之间关系的重要工具。

通过计算雅可比矩阵,我们可以分析机械臂的奇异点、可操作度等性能指标。

具体步骤如下:

  1. 速度关系分析:从机械臂的速度角度出发,分析末端执行器的线速度和角速度与各关节角速度之间的关系。

  2. 雅可比矩阵定义:根据速度关系,定义雅可比矩阵J,使得末端执行器的速度v可以表示为关节速度θ̇的线性变换,即v = Jθ̇。

  3. 计算多组数据:通过计算多组关节点角速度值对应的末端笛卡尔矢量,求解雅可比矩阵的各个元素。

  4. MATLAB实现:在MATLAB中编写jacobian.m脚本文件,实现雅可比矩阵的计算,并分析其性质。
六、结论与展望

本报告通过建立KR10 R1100-2机器手臂的DH模型、推导坐标变换矩阵、计算运动学方程和雅可比矩阵,系统地分析了该机器手臂的运动学特性。

未来工作可以进一步探讨动力学分析、轨迹规划、控制算法设计等方面,以实现更复杂、更精确的机器人操作任务。同时,随着深度学习等人工智能技术的发展,将其应用于机器人控制中,有望进一步提升机器人的智能化水平和操作性能。

📚2 运行结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值