SAS统计描述、作图与均值显著性检验

本文详细介绍了如何使用SAS进行统计分析和数据可视化,包括计算描述性统计量、绘制各种统计图、进行样本均值显著性检验、区间估计以及相关性分析。涉及内容涵盖频数分布、箱式图、条形图、散点图以及正态性检验、方差分析等。同时,展示了在医学和生物学领域的实际应用,如小麦育种、胆固醇含量研究和脑缺氧影响分析,以及饲料对小鼠肝铁含量影响的探究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.掌握SAS统计量计算、频率分布等描述性统计操作;
2.掌握SAS常用统计图绘制过程步操作;
3. 学习SAS制表过程PROC REPORT;
4.掌握SAS样本均值显著性检验及区间估计的操作。

习题:
(一) 在小麦育种时,调查了杂交后代的四个性状,即:株高、穗长、穗粒数和成熟早晚,数据见“wheat.txt”。请分别用hop、loe、nog和fas代表上述四个变量,以成熟的早(e)、中(m)、晚(l)分类。
部分数据示例
数据读入

data wheat;
	infile "/home/u45803045/my/my02/wheat.txt";
	input hop loe nog fas $ @@;
run;

question 1:编写SAS程序计算按成熟期早、中、晚分组的株高与穗长的平均数、标准差和标准误差以及穗粒数的范围和变异系数。

proc means data=wheat mean std stderr;
	var hop loe;
	class fas;
run;
proc means data=wheat range cv;
	var nog;
	class fas;
run;

result:
结果

question 2:绘制按成熟期分组显示的株高数据箱式图

proc sort data=wheat;
	by fas;
run;

proc univariate data=wheat plot;
	var hop;
	by fas;
run;

result:
结果
question 3:绘制按成熟期分组显示的株高、穗长、穗粒数均值条形图(株高、穗长、穗粒数均在同一图中),标题为“不同成熟期小麦株高、穗长、穗粒数的比较”;

data wheat2;
	set wheat;
	value = hop;type = 'hop';output;
	value = loe;type = 'loe';output;
	value = nog;type = 'nog';output;
	keep value type fas;
run;

proc gchart data=wheat2;
	vbar fas/discrete group=type subgroup=fas sumvar=value type=mean outside=mean width=5;
	title "不同成熟期小麦株高、穗长、穗粒数的比较";
run;

result:
结果
question 4:作穗长与穗粒数关联性分析的散点图,标题为“小麦穗长与穗粒数的散点图”。

proc gplot data=wheat;
	plot loe*nog/vaxis=6 to 9 by 1;
	goption vsize=5cm 
			hsize=5cm;*考虑到结果要上交,调整了一下大小;
	title "小麦穗长与穗粒数的散点图";
run;

result:
结果
(二)调查100名成年男子血清总胆固醇含量(mg/L),数据见文件“cholestrol.dat”。
数据结构
读入数据:

data cholestrol;
	infile "/home/u45803045/my/my02/cholestrol.dat";
	input TC @@;
run;

计算胆固醇含量的四分位间距
试用SAS绘制频数直方图,并在图上添加一条理论正态曲线
作正态性检验
对总胆固醇含量做PP-图

proc univariate data=cholestrol plot normal;
	var TC;
	ppplot;*作p-p图;
	histogram /lognormal;*lognormal为添加一条正态曲线;
run;

四分位间距
正态曲线添加
正态性检验
p-p图
(三)研究脑缺氧对脑组织中钙泵的含量影响,将出生状况相近的小猪按出生体重配成7对,随机接受两种处理,一组为对照,一组为缺氧模型组,结果如下。请分别用proc means和proc ttest对两种处理是否存在显著差异进行统计推断(α=0.01)。
数据结构
读入数据:

data ca_pu;
	input x1 x2 @@;
	diff=x1-x2;
	cards;
	0.3550 0.2755
	0.2000 0.2545
	0.3130 0.1800
	0.3630 0.1800
	0.3544 0.3113
	0.3450 0.2955
	0.3050 0.2870
	;
run;
proc means data=ca_pu  n mean std stderr t prt;
	var diff;
	title "paired-comparisons t test";
run;
proc ttest data=ca_pu alpha=0.01;
	paired x1*x2;
run;

result:
means方法
ttest方法
(四)随机抽取小鼠分配到两个不同饲料组中,喂养一段时间后测肝脏铁含量(μg/g),数据如下。
数据集
数据读入:

data Fe;
	input group value @@;
	length label $24;
	if value>=1.5 then
	label='达标';
	else label='不达标';
	cards;
	1 3.59 1 0.96 1 3.89 1 1.23 1 1.61 1 2.94 1 1.96 1 3.68 1 1.54 1 2.59
	2 2.23 2 1.14 2 2.63 2 1.00 2 1.35 2 2.01 2 1.64 2 1.13 2 1.01
	;
run;

question 1:试用proc ttest分析不同饲料对肝铁含量有无显著影响。

proc ttest data=Fe;
	class group;
	var value;
run;

result:
result
question 2:作方差齐性检验(α=0.05)

proc glm data=Fe alpha=0.05;
	class group;
	model value=group;
	means group/hovtest;
run;

result:
齐性检验
question 3:分别给出两组铁含量的均值的99%置信区间。

proc means data=Fe alpha=0.05 mean lclm uclm;
	var value;
	class group;
	types group;
	output out=result(keep=mean lclm uclm) mean=mean lclm=lclm uclm=uclm;
run;
proc print data=result;
run;

result
question 4:给出两组均值差值的99%置信区间。

proc means data=result alpha=0.05 lclm uclm;
	var mean;
run;

result
question 5:设铁含量要>=1.5ug/g才达标,使用proc report 制表

ods excel file="/home/u45803045/my/my02/result.xlsx";
ods excel options(embedded_titles='yes');
	proc report data=Fe;
		title "不同饲料组小鼠肝铁含量的观察";
		column group value=n label value=mean;
		define group/group '分组';
		define mean/analysis mean format=4.2 '肝脏铁含量均值';
		define n/analysis n '小鼠数';
		define label/order center group across '含量达标情况/(>=1.5ug/g达标)';
	run;
ods excel close;

result:
result

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值