LLM:Vicuna 13B 环境配置(7B需要14G显存,13B需要28G显存)

租用服务器3090

配置Fastchat
  GitHub项目源地址:https://github.com/lm-sys/FastChat

先进行依赖包安装

pip3 install fschat


下载项目到本地,慢的话可以自己下载好通过FTP上传到服务器

git clone https://github.com/lm-sys/FastChat.git
cd FastChat


升级pip并安装依赖包

# 不升级pip会报错,下面两种方式二选一
python3 -m pip install --upgrade pip # 方式一
pip3 install --upgrade pip     # 方式二

# 升级之后运行下面命令进行安装
pip3 install -e .

配置transformers

# 下载transformers包
git clone https://github.com/huggingface/transformers.git

# 进入transformers目录
cd transformers

# 安装transformers
pip3 install -e .

上传模型权重——使用阿里云盘上传到数据盘(自己提前下载模型权重并保存到自己的阿里云盘)

 启动vicuna-13b模型

# 显卡有28G显存用此命令
python3 -m fastchat.serve.cli --model-path /root/autodl-tmp/vicuna-13b 

# 显卡不足28G显存用此命令
python3 -m fastchat.serve.cli --model-path /root/autodl-tmp/vicuna-13b --load-8bit 

# /root/autodl-tmp/vicuna-13b 为模型权重路径,可以根据自己的情况替换为自己的路径

运行成功(7B和33B部署流程也一样,只是每个模型所需要的显存不一样,需要不同配置的显卡)

03-29
<think>好的,我现在需要回答用户关于Vicuna模型的介绍及其应用的问题。首先,我需要根据用户提供的引用内容来组织信息。用户给了四个引用,分别涉及Vicuna的部署教程、MiniGPT-4的构建、新闻机构的应用案例,以及Vicuna的开源背景。 首先,Vicuna的简介部分,引用[4]提到它是基于LLaMA和Alpaca的开源模型,由学的研究者共同开发。这点很重要,需要放在简介的开头,说明其来源和背景。引用[1]提到Vicuna的定义,可能可以结合这两部分,介绍模型的基本信息和目标。 接下来是技术特点,引用[4]提到13B参数规模和优化方法,比如调整训练损失函数和优化器,以及支持长文本对话。这些技术细节需要展开说明,但要注意用户可能不熟悉术语,需要用通俗的语言解释。 关于应用场景,引用[3]给出了新闻机构使用Wizard Vicuna 13B辅助内容创作的例子,可以具体说明如何应用。另外,引用[2]提到MiniGPT-4基于Vicuna-13B,说明其在模态领域的应用,比如图像理解。这部分需要分点列出,清晰展示不同领域的应用。 部署部分,引用[1]详细说明了在Linux和Windows下的部署步骤,需要概括安装流程,但用户可能不需要太详细的步骤,只需提到支持平台和社区资源即可。 最后,生成相关问题需要考虑用户可能的后续疑问,比如技术优化、应用案例比较、部署的硬件要求等。需要确保问题覆盖模型的各个方面,便于用户进一步探索。 现在需要检查是否符合系统级指令:使用正确的中文,数学公式用$...$,独立公式用$$...$$,不过用户的问题不涉及数学公式,所以这点可能不需要。但需要确保引用标识正确,每个引用结束加上[^n],比如在提到部署教程时加[^1],应用案例加[^3]等。 可能需要注意引用内容中的细节,比如Vicuna-13B的参数规模,优化方法中的监督微调(SFT)和RLHF,以及训练数据的规模。需要准确转述这些信息,避免错误。 最后,确保回答结构清晰,分点明确,语言通顺,符合用户要求的结构:简介、技术特点、应用场景、部署信息,然后相关问题。</think>### Vicuna 模型介绍及应用 #### 一、Vicuna 简介 Vicuna 是一个开源的 13B 参数规模语言模型LLM),由加州学伯克利分校、卡内基梅隆学等机构的研究者联合开发。它基于 Meta 的 LLaMA 模型框架,并借鉴了 Stanford Alpaca 项目的优化方法,旨在降低模型的应用门槛,推动研究和实际场景的落地[^4]。Vicuna 通过监督微调(SFT)和人类反馈强化学习(RLHF)技术优化,支持长文本对话和轮交互。 #### 二、技术特点 1. **高效训练**:使用约 7 万条用户对话数据进行微调,训练成本显著低于同类模型。 2. **性能优化**:调整了损失函数和优化器设计,减少内存占用并提升推理速度。 3. **场景支持**:支持最长 2048 token 的上下文理解,适用于复杂对话任务。 #### 三、应用场景 1. **内容创作辅助** 新闻机构可利用 Wizard Vicuna 13B 快速生成文章初稿。例如,输入关键词或提纲后,模型自动生成文本,再由人工润色,效率提升约 40%[^3]。 2. **模态模型开发** MiniGPT-4 基于 Vicuna-13B 构建,结合视觉编码器实现图像理解与对话功能,应用场景包括智能客服、教育工具等[^2]。 3. **定制化聊天机器人** 支持在 Linux/Windows 系统部署,用户可通过修改提示词模板构建个性化对话系统。 #### 四、部署与生态 - **安装要求**:需 Python 3.8+ 环境及至少 16GB 显存(GPU部署) - **开源社区**:提供完整的权重文件和技术文档,开发者可二次优化模型结构[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值