(十一)神经网络- CIFAR-10的网络模型搭建及Sequential的使用

本文介绍了如何在PyTorch中使用Sequential类搭建CIFAR-10神经网络,详细解释了Conv2D和MaxPool2D的padding、stride计算,并展示了如何使用TensorBoard记录和可视化模型的计算图。
摘要由CSDN通过智能技术生成

1.Sequential类的介绍

在这里插入图片描述

2.CIFAR-10神经网络的搭建

2.1 Structure Model

在这里插入图片描述

2.2 Conv2D计算padding、stride公式

  • dilation默认值是1,代表不使用空洞卷积
    在这里插入图片描述

2.3 代码实战

from torch import nn
import torch
from torch.utils.tensorboard import SummaryWriter


class My_Module(nn.Module):
    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.seq = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),
            nn.Linear(in_features=1024, out_features=64),
            nn.Linear(in_features=64, out_features=10)
        )

    def forward(self, x):
        output = self.seq(x)
        return output


my_module = My_Module()
input_tensor = torch.ones((64, 3, 32, 32))
writer = SummaryWriter("logs_seq")
writer.add_graph(model=my_module, input_to_model=input_tensor)  # 用tensorboard绘制计算图
writer.close()

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值