保姆级实战教程:安装部署私有化大模型,并投喂数据

想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。

潘哥今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。

这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。

酷~~~

首先,我们会用到Ollama,功能是运行大模型。

Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。

目前Ollama支持的大语言模型有:Llama 3、Phi 3、Mistral、Gemma、Neural Chat、Starling、LLaVA、Solar等,当然也包括我们今天演示的Qwen2.5开源大模型。

其次,是Qwen2.5(通义千问)开源大模型。

Qwen(通义千问)是阿里巴巴旗下的大语言模型,具有70亿参数规模,基于Transformer研发。

最后,是AnythingLLM,大模型增强应用,用来做界面化的交互,同时也可以处理文本标记,以及向量数据存储,这样我们就可以给自己部署的大模型投喂数据了。

OK,正式开始!

首先,我们来下载Ollama,官网是:https://ollama.com/

按照页面现实,点击“Download”按钮,进入下载页面。

Ollama支持macOS、Linux和我们常用的Windows操作系统,按照自己电脑安装的操作系统进行选择就可以了。

潘哥用的是Windows 11。

文件并不大,只有700多M,安装软件下载到本地后,直接双击进行安装!

安装软件不复杂,相信各位都能顺利完成。

安装成功后,系统会自动进入命令提示符界面。

现在我们下载AnythingLLM,官网地址是:https://anythingllm.com/

同样的,我们根据自己电脑操作系统,选择对应的安装程序进行下载。

不到300M的安装程序,很快就可以下载下来了。

安装过程和常规软件安装差不多,按照提示进行安装即可。

接下来,咱需要安装一个大模型,今天演示安装通义千问(Qwen)大模型。

在Ollama官网,搜索“Qwen”,如下图所示。

我们选择“qwen2.5”。

在出现的页面中,我们选择复制这段命令,或者直接在命令提示那里输入也可以。

回车后,命令开始执行。

系统会自动开始下载Qwen2.5大模型,文件有点大,4.7G,所以,需要耐心等待一下。

安装成功了,如下图:

这时,我们就可以向大模型提问了,比如:

好了,现在我们还差一个友好的交互界面。

我们打开AnythingLLM,来设置界面化的操作模式。

首先我们先对它进行相关配置的设置。点击左下角的设置按钮。

LLM首选项要选“Ollama”,模型选:Qwen2.5:latest,其它选项可以设置为默认值就可以了。

向量数据库设置,根据实际情况选择即可,这里我们选择了默认的LanceDB。

接下来,嵌入首选项设置,嵌入引擎提供商我们选择Ollama,Ollama Embedding Model我选择的是:nomic-embed-text。

nomic-embed-text是需要提前安装的,安装方法也很简单,在Ollama官网搜索nomic-embed-text,然后复制执行代码,在命令提示符状态下进行执行即可。

复制代码,并执行,系统会进行自动下载并安装。

如果我们要给大模型投喂数据,那么投喂的数据都需要先进行向量化处理,而nomic就是对文本进行向量化处理的工具。

返回上一步的操作界面,我们来创建一个工作区,任意命名这个工作区即可。

我们对这个工作区做一个简单的设置,选择“聊天设置”,同理,要设置成Ollama和Qwen2.5。

接下来设置“代理设置”,一样的配方,一样的味道。

都设置完成后,也象征着我们顺利完成了本地大模型部署,现在可以和它进行对话了哦。

激动的心,颤抖的手,可以在对话框里开始提问了哦~~~

OK,搞定,手工~

且慢,如果我们想投喂数据该怎么操作?

我们只需点击“设置”按钮旁边的这个按钮,即可进入投喂数据操作界面。

投喂操作界面如下:

点击上传文件就可以了。

上传文件后,系统会进行向量化处理,处理后保存,那么下次提问,就可以检索出我们投喂的数据了。

比如,我随便编排了一段文字,然后投喂进去。

这个“锻炼项目”是我瞎编的。

接下来我们再向它提问,它的回答就已经有了我们投喂的数据。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

### 如何向本地部署的 DeepSeek 系统输入数据 为了将数据导入到本地部署的 DeepSeek 系统中,通常需要遵循特定的数据处理流程。此过程涉及准备、传输以及验证数据。 #### 数据准备阶段 在开始之前,确保待上传的数据已经过预处理符合 DeepSeek 所需格式。这可能涉及到清理原始文件中的噪声或冗余信息,将其转换成适合机器学习模型使用的结构化形式[^1]。 #### 配置环境变量与连接设置 对于本地环境中运行的应用程序来说,配置正确的网络参数至关重要。通过修改应用程序配置文件来指定目标服务器地址及其他必要的通信选项可以实现这一点。例如,在 Python 中可以通过如下方式设定: ```python import os os.environ['DEEPSEEK_HOST'] = 'localhost' os.environ['DEEPSEEK_PORT'] = '8080' ``` #### 使用 API 或 SDK 进行交互 大多数现代数据分析平台都提供了 RESTful APIs 或者专门开发的软件开发工具包 (SDK),以便于外部应用与其进行高效沟通。利用这些接口可以直接发送 HTTP 请求或将数据打包后提交给服务端。下面是一个简单的 POST 请求示例,用于上传 JSON 格式的文档至 DeepSeek: ```python import requests import json url = f"http://{os.getenv('DEEPSEEK_HOST')}:{os.getenv('DEEPSEEK_PORT')}/api/v1/documents" headers = {'Content-Type': 'application/json'} data = {"text": "This is an example document."} response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.status_code) ``` 上述代码片段展示了如何构建一个基本的客户端请求以推送新条目进入系统数据库内存储起来供后续分析使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值