题目地址:
https://leetcode.com/problems/palindrome-partitioning-ii/
给定一个字符串,允许将其切割成若干子串,问若要使得切成的所有子串都回文,至少要切多少刀。
思路是用动态规划。给定一个长的字符串,我们可以枚举其后缀,如果发现某个后缀回文,那么可以考虑将其切出,然后问余下的子串至少需要切多少刀,设其为 k k k,这样整个的刀数就是 k + 1 k+1 k+1。由此我们就得到了一个递推式。显然如果是长度为 1 1 1的子串,那就不用切,答案就是 0 0 0。于是我们就可以从这个base case一路递推到整个字符串。代码如下:
public class Solution {
public int minCut(String s) {
if (s == null || s.length() == 0) {
return 0;
}
int n = s.length();
boolean[][] isPalindrome = new boolean[n][n];
// minCut[i]代表s[0,...,i]至少要切多少刀
int[] minCut = new int[n];
// 很显然只有一个字符的时候不用切,也就是0
minCut[0] = 0;
for (int i = 1; i < n; i++) {
// 初始化minCut[i]为i,因为s[0,...,i]最多切i刀就一定能切出回文串来
// 无非就是每个字母单独成为一个回文串即可
minCut[i] = i;
// 接下来在遍历切的位置的时候的同时顺便缓存一下子串是否回文
for (int j = i; j >= 0; j--) {
isPalindrome[j][i] = s.charAt(j) == s.charAt(i);
if (i - j + 1 > 2) {
isPalindrome[j][i] &= isPalindrome[j + 1][i - 1];
}
// 如果s[j,...,i]回文,那就考虑将其切出
if (isPalindrome[j][i]) {
// 如果j = 0,说明整个s[0,...,i]都回文,那就不用切了,并且0一定是最小值,直接break
// 否则就切出s[j,...,i],再加上s[0,...,j-1]要切的刀数即可
if (j == 0) {
minCut[i] = 0;
break;
} else {
minCut[i] = Math.min(minCut[i], 1 + minCut[j - 1]);
}
}
}
}
return minCut[n - 1];
}
}
时空复杂度 O ( n 2 ) O(n^2) O(n2)。