【Leetcode】132. Palindrome Partitioning II

题目地址:

https://leetcode.com/problems/palindrome-partitioning-ii/

给定一个字符串,允许将其切割成若干子串,问若要使得切成的所有子串都回文,至少要切多少刀。

思路是用动态规划。给定一个长的字符串,我们可以枚举其后缀,如果发现某个后缀回文,那么可以考虑将其切出,然后问余下的子串至少需要切多少刀,设其为 k k k,这样整个的刀数就是 k + 1 k+1 k+1。由此我们就得到了一个递推式。显然如果是长度为 1 1 1的子串,那就不用切,答案就是 0 0 0。于是我们就可以从这个base case一路递推到整个字符串。代码如下:

public class Solution {
    public int minCut(String s) {
        if (s == null || s.length() == 0) {
            return 0;
        }
        
        int n = s.length();
        boolean[][] isPalindrome = new boolean[n][n];
        // minCut[i]代表s[0,...,i]至少要切多少刀
        int[] minCut = new int[n];
        // 很显然只有一个字符的时候不用切,也就是0
        minCut[0] = 0;
        
        for (int i = 1; i < n; i++) {
        	// 初始化minCut[i]为i,因为s[0,...,i]最多切i刀就一定能切出回文串来
        	// 无非就是每个字母单独成为一个回文串即可
            minCut[i] = i;
            // 接下来在遍历切的位置的时候的同时顺便缓存一下子串是否回文
            for (int j = i; j >= 0; j--) {
                isPalindrome[j][i] = s.charAt(j) == s.charAt(i);
                if (i - j + 1 > 2) {
                    isPalindrome[j][i] &= isPalindrome[j + 1][i - 1];
                }
                // 如果s[j,...,i]回文,那就考虑将其切出
                if (isPalindrome[j][i]) {
                	// 如果j = 0,说明整个s[0,...,i]都回文,那就不用切了,并且0一定是最小值,直接break
                	// 否则就切出s[j,...,i],再加上s[0,...,j-1]要切的刀数即可
                    if (j == 0) {
                        minCut[i] = 0;
                        break;
                    } else {
                        minCut[i] = Math.min(minCut[i], 1 + minCut[j - 1]);
                    }
                }
            }
        }
        
        return minCut[n - 1];
    }
}

时空复杂度 O ( n 2 ) O(n^2) O(n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值