【Lintcode】993. Array Partition I

题目地址:

https://www.lintcode.com/problem/array-partition-i/description

给定一个长度为 2 n 2n 2n的数组 A A A,要求将其分为 n n n个数对 ( a i , b i ) (a_i,b_i) (ai,bi),其中 i ∈ { 1 , 2 , . . . , n } i\in\{1,2,...,n\} i{1,2,...,n},使得 ∑ i = 1 n min ⁡ ( a i , b i ) \sum_{i=1}^n\min(a_i,b_i) i=1nmin(ai,bi)最大。返回这个最大的和。

从小到大排序后将第 0 , 2 , 4 , . . . , 2 n − 2 0,2,4,...,2n-2 0,2,4,...,2n2个数相加即可。代码如下:

import java.util.Arrays;

public class Solution {
    /**
     * @param nums: an array
     * @return: the sum of min(ai, bi) for all i from 1 to n
     */
    public int arrayPairSum(int[] nums) {
        // Write your code here
        if (nums == null || nums.length == 0) {
            return 0;
        }
        
        int res = 0;
        Arrays.sort(nums);
        for (int i = 0; i < nums.length; i += 2) {
            res += nums[i];
        }
        
        return res;
    }
}

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),空间 O ( 1 ) O(1) O(1)

算法正确性证明参考https://blog.csdn.net/qq_46105170/article/details/103776402

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值