【梳理】离散数学 第10章 群与环 10.2 子群与群的陪集分解

本文介绍了群论中的子群概念,包括子群的定义、判定定理和性质。子群是群的非空子集,满足封闭性和逆元性质。文中详细证明了子群的三个判定定理,并探讨了子群的生成、中心、右陪集、左陪集以及正规子群等概念。还提到了拉格朗日定理,即有限群的子群阶与其陪集数之积等于群的阶。
摘要由CSDN通过智能技术生成

教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后

10.2 子群与群的陪集分解

1、设群<G,>,群<H,>的集合H是G的非空子集(回忆:群是代数系统的一种,有时也分别用子代数系统和代数系统涉及的集合来简记子群和群)。如果H关于G中的运算构成群,就称H是G的子群,记作H ≤ G。如果H是G的子群且HG,则称H是G的真子群,记作H < G。

2、子群的判定定理一:设群G及其非空子集H。H是G的子群当且仅当:
(1)任意a,b∈H,都有ab∈H。(回忆:这里省略了运算符)
(2)任意a∈H,都有a-1∈H。
证明 必要性(左推右)是显然的。因为根据群的定义,群的运算必须是封闭的,且群的集合的每个元素都具有逆元。
下面证明充分性(右推左)。条件(1)和(2)分别已知群的运算封闭性、构成群的集合的每个元素都具有逆元。因为H是G的子群,也就是说H的参与运算的元素全部来自G。而G是一个群,也就是说群H的运算符合结合律(注意,子群和群的构成成分中,两个集合是包含关系,而运算的性质是完全相同的)。所以,只需证明H存在单位元,即e∈H。
因为H非空,所以设a∈H。由(2)知:a-1∈H。再由(1)知:aa-1∈H。即e∈H。证毕。

3、子群的判定定理二:设群G及其非空子集H。H是G的子群当且仅当:
(1)任意a、b∈H,都有ab-1∈H。
证明 必要性。任取a、b∈H,由于H是G的子群,必有b-1∈H。从而ab-1∈H。
充分性。因为H非空,所以设a∈H。根据(1),令b = a,就有aa-1∈H。即e∈H。任取a∈H。因为e∈H,所以ea-1∈H。即a-1∈H。任取a、b∈H,仿照刚才的证明(“任取a∈H。因为e∈H……”),有ab-1∈H,即b-1∈H。再由(1),得a(b-1)-1∈H,即ab∈H。单位元、逆元、结合律均予以证明,所以H是群。又H是G的非空子集,所以H是G的子群。

4、子群的判定定理三:设群G及其非空子集H。如果H是有穷集,则H是G的子群当且仅当:
(1)任意a,b∈H,都有ab∈H。
证明 必要性是显然的。为了证明充分性,结合判定定理一的证明过程,只需证明:对任意a∈H,都有a-1∈H。
任取a∈H。若a = e,则a-1 = e-1 = e∈H。若a≠e,令S = {a,a2,…

  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值