题目地址:
https://www.lintcode.com/problem/range-addition/description
给定一个长度为 n n n的零数组 A A A,再给定若干次更新,每次更新由三元组组成, ( a , b , x ) (a,b,x) (a,b,x),表示将 A [ a : b ] A[a:b] A[a:b]的所有元素增加 x x x。问更新完成之后 A A A变成了什么。
思路是差分数组。设 d [ i ] = A [ i ] − A [ i − 1 ] d[i]=A[i]-A[i-1] d[i]=A[i]−A[i−1],则每次更新的时候,相当于执行对 d [ a ] d[a] d[a]增加了 x x x,而对 d [ b + 1 ] d[b+1] d[b+1]减少了 x x x。这样就可以将每次更新操作的时间复杂度降为了 O ( 1 ) O(1) O(1)。最后只需要对 d d d求前缀和就能还原回 A A A了。代码如下:
public class Solution {
/**
* @param length: the length of the array
* @param updates: update operations
* @return: the modified array after all k operations were executed
*/
public int[] getModifiedArray(int length, int[][] updates) {
// Write your code here
int[] diff = new int[length];
for (int[] update : updates) {
diff[update[0]] += update[2];
if (update[1] + 1 < length) {
diff[update[1] + 1] -= update[2];
}
}
for (int i = 1; i < length; i++) {
diff[i] += diff[i - 1];
}
return diff;
}
}
时间复杂度 O ( n + u ) O(n+u) O(n+u), n n n为数组长度, u u u为更新次数,空间 O ( 1 ) O(1) O(1)。