题目地址:
https://leetcode.com/problems/continuous-subarray-sum/
给定一个长 n n n的数组 A A A,再给定一个整数 k k k,问是否存在一个长不小于 2 2 2的子数组,使得其和是 k k k的倍数。
思路是前缀和 + 哈希表。求出 A A A的前缀和,如果 k = 0 k=0 k=0的话,相当于找是否有两个前缀和相等并且右端点之差大于等于 2 2 2;如果 k ≠ 0 k\ne 0 k=0,那可以将前缀和模掉 k k k,然后也是去找是否有两个数相等并且右端点之差大于等于 2 2 2。可以用哈希表存某个前缀和(或模掉 k k k后)出现的第一个位置,每次遍历到 A [ i ] A[i] A[i]的时候,就查询一下 A [ i ] A[i] A[i]第一次出现的位置距离 i i i是否大于等于 2 2 2,如果是,就找到了。遍历完未返回true,说明没找到,返回false。代码如下:
class Solution {
public:
bool checkSubarraySum(vector<int>& nums, int k) {
unordered_map<int, int> mp;
mp[0] = -1;
for (int i = 0, s = 0; i < nums.size(); i++) {
s = (s + nums[i]) % k;
if (mp.count(s)) {
if (i - mp[s] >= 2) return true;
} else mp[s] = i;
}
return false;
}
};
时空复杂度 O ( n ) O(n) O(n)。