【ACWing】861. 二分图的最大匹配

题目地址:

https://www.acwing.com/problem/content/863/

给定一个二分图,其中左半部包含 n 1 n_1 n1个点(编号 1 ∼ n 1 1\sim n_1 1n1),右半部包含 n 2 n_2 n2个点(编号 1 ∼ n 2 1\sim n_2 1n2),二分图共包含 m m m条边。数据保证任意一条边的两个端点都不可能在同一部分中。求该二分图的最大匹配,返回匹配数。

输入格式:
第一行包含三个整数 n 1 n_1 n1 n 2 n_2 n2 m m m。接下来 m m m行,每行包含两个整数 u u u v v v,表示左半部点集中的点 u u u和右半部点集中的点 v v v之间存在一条边。

输出格式:
输出一个整数,表示二分图的最大匹配数。

数据范围:
1 ≤ n 1 , n 2 ≤ 500 1\le n_1,n_2\le 500 1n1,n2500
1 ≤ u ≤ n 1 1\le u\le n_1 1un1
1 ≤ v ≤ n 2 1\le v\le n_2 1vn2
1 ≤ m ≤ 1 0 5 1\le m\le 10^5 1m105

可以用匈牙利算法。我们先将这个二分图分为左右两部分,左半部分编号为 u 1 , . . . u n 1 u_1,...u_{n_1} u1,...un1,右半部分编号为 v 1 , . . . , v n 2 v_1,...,v_{n_2} v1,...,vn2。其思想是这样的,每次枚举左边的点,然后对这个点进行搜索,按照非匹配边、匹配边、非匹配边、匹配边等等这样的顺序走,匹配边指的是其两端点在之前已经形成匹配,非匹配边则是相反的意思。这个过程在第一次走到右边的非匹配点停止。非匹配点指的是在之前还未匹配的点。如果存在一条这样的路径的话,就找到了一个更优的匹配(具体来说匹配数会比旧匹配数加 1 1 1)。解释是这样的,不妨设这个路径是 u 1 → v 1 → u 2 → v 2 → . . . → u k → v k u_1\to v_1\to u_2\to v_2\to ...\to u_k\to v_k u1v1u2v2...ukvk,那么 u 1 → v 1 u_1\to v_1 u1v1是个非匹配边, v 1 → u 2 v_1\to u_2 v1u2是个匹配边, u 2 → v 2 u_2\to v_2 u2v2是个非匹配边,以此类推。显然这条路径里一共有 k − 1 k-1 k1个匹配边,但是我们可以重新排列,使得 u 1 , v 1 u_1,v_1 u1,v1匹配, u 2 , v 2 u_2,v_2 u2,v2匹配,等等,这样匹配数就是 k k k个,比原先多一个。显然这样做更优。算法的思想就是,遍历左边的点,每次都去找形如这样的路径(这样的路径被称作增广路,这个增广路和网络流里的增广路意思不一样,但非常相似),如果找到了就将匹配数加 1 1 1。实现的话可以用DFS,在寻找增广路的同时,如果找到了,就在回溯的时候把这个增广路的匹配边反一下,形成更长的路径以及更大的匹配。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 510, M = 100010;

int n1, n2, m;
int h[N], e[M], ne[M], idx;
// match[i]存的是右边的点i与左边哪个点匹配的。match[i] = 0说明还未匹配
int match[N];
bool st[N];

void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

// 返回从v出发是否能找到一条增广路
bool dfs(int v) {
    for (int i = h[v]; ~i; i = ne[i]) {
        int j = e[i];
        if (!st[j]) {
            st[j] = true;
            // 如果走到了非匹配点,那已经找到了一条增广路,将其与v匹配并返回true;
            // 如果走到了匹配点j,那就看从j的匹配点出发能不能走出一条增广路,如果能,
            // 也可以将v与j匹配并返回true;否则不做新匹配,匹配保持原样
            if (!match[j] || dfs(match[j])) {
                match[j] = v;
                return true;
            }
        }
    }
	
	// 否则说明从v出发找不到增广路,返回false
    return false;
}

int main() {
    cin >> n1 >> n2 >> m;

    memset(h, -1, sizeof h);

    while (m--) {
        int a, b;
        cin >> a >> b;
        add(a, b);
    }

    int res = 0;
    for (int i = 1; i <= n1; i++) {
    	// st数组实际上就是DFS中的visited数组,每次都要清为false
        memset(st, 0, sizeof st);
        // 如果从i能找到增广路,就能增加匹配数,将匹配数加1
        if (dfs(i)) res++;
    }

    cout << res << endl;

    return 0;
}

时间复杂度 O ( n m ) O(nm) O(nm),空间 O ( n ) O(n) O(n)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
堆排序是一种高效的排序算法,它利用了堆的数据结构来实现排序。堆是一个完全二叉树,具有以下性质:对于任意节点 i,其父节点的值小于等于子节点的值。 堆排序的基本思路如下: 1. 构建最大堆:将待排序的数组看作是一个完全二叉树,从最后一个非叶子节点开始,依次向上调整每个节点,使得以该节点为根的子树满足最大堆的性质。 2. 将堆顶元素与最后一个元素交换:将最大堆的堆顶元素(即数组的第一个元素)与数组最后一个元素交换位置,此时最大元素就位于数组的最后。 3. 调整堆:将剩余元素重新调整为最大堆。 4. 重复步骤 2 和步骤 3,直到所有元素都排序完成。 以下是堆排序的 C++ 代码实现: ```cpp #include <iostream> using namespace std; // 调整以 root 为根的子树为最大堆 void heapify(int arr[], int n, int root) { int largest = root; // 假设根节点最大 int left = 2 * root + 1; // 子节点索引 int right = 2 * root + 2; // 右子节点索引 // 若子节点大于根节点,更新最大值索引 if (left < n && arr[left] > arr[largest]) { largest = left; } // 若右子节点大于最大值节点,更新最大值索引 if (right < n && arr[right] > arr[largest]) { largest = right; } // 若最大值不是根节点,交换根节点和最大值 if (largest != root) { swap(arr[root], arr[largest]); // 递归调整交换后的子树 heapify(arr, n, largest); } } void heapSort(int arr[], int n) { // 构建最大堆 for (int i = n / 2 - 1; i >= 0; i--) { heapify(arr, n, i); } // 逐步取出最大值,调整堆 for (int i = n - 1; i > 0; i--) { swap(arr[0], arr[i]); heapify(arr, i, 0); } } int main() { int arr[] = {4, 10, 3, 5, 1}; int n = sizeof(arr) / sizeof(arr[0]); heapSort(arr, n); cout << "Sorted array: "; for (int i = 0; i < n; i++) { cout << arr[i] << " "; } cout << endl; return 0; } ``` 以上就是堆排序的基本思路和实现方法。堆排序的时间复杂度为 O(nlogn),其中 n 为数组的长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值