【ACWing】1076. 迷宫问题

题目地址:

https://www.acwing.com/problem/content/1078/

给定一个 n × n n×n n×n的二维数组,如下所示:

int maze[5][5] = {

0, 1, 0, 0, 0,

0, 1, 0, 1, 0,

0, 0, 0, 0, 0,

0, 1, 1, 1, 0,

0, 0, 0, 1, 0,

};

它表示一个迷宫,其中的 1 1 1表示墙壁, 0 0 0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。数据保证至少存在一条从左上角走到右下角的路径。

输入格式:
第一行包含整数 n n n。接下来 n n n行,每行包含 n n n个整数 0 0 0 1 1 1,表示迷宫。

输出格式:
输出从左上角到右下角的最短路线,如果答案不唯一,输出任意一条路径均可。按顺序,每行输出一个路径中经过的单元格的坐标,左上角坐标为 ( 0 , 0 ) (0,0) (0,0),右下角坐标为 ( n − 1 , n − 1 ) (n−1,n−1) (n1,n1)

数据范围:
0 ≤ n ≤ 1000 0≤n≤1000 0n1000

边权都是 1 1 1,可以用BFS来求最短路,同时用一个数组 p p p来存 p [ i ] [ j ] p[i][j] p[i][j]这个格子是从哪个格子走过来的。求路径的时候再由终点向起点推。为了方便,也可以直接从终点 ( n − 1 , n − 1 ) (n-1,n-1) (n1,n1)开始搜,搜到起点 ( 0 , 0 ) (0,0) (0,0)为止,这样反推出路径的时候就是恰好从 ( 0 , 0 ) (0,0) (0,0)出发的了。代码如下:

#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
using PII = pair<int, int>;

const int N = 1010;
int a[N][N];
PII pre[N][N];
int n;

void bfs(int x, int y) {
  static int d[] = {1, 0, -1, 0, 1};
  memset(pre, -1, sizeof pre);
  queue<PII> q;
  q.push({x, y});

  pre[x][y] = {x, y};
  while (q.size()) {
    auto t = q.front();
    q.pop();
    x = t.first, y = t.second;
    for (int i = 0; i < 4; i++) {
      int nx = x + d[i], ny = y + d[i + 1];
      if (nx < 0 || nx >= n || ny < 0 || ny >= n) continue;
      if (a[nx][ny]) continue;
      if (pre[nx][ny].first != -1) continue;

      q.push({nx, ny});
      pre[nx][ny] = t;

      if (!nx && !ny) return;
    }
  }
}

int main() {
  scanf("%d", &n);
  for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++) scanf("%d", &a[i][j]);

  bfs(n - 1, n - 1);
  PII end = {0, 0};

  while (1) {
    printf("%d %d\n", end.first, end.second);
    if (end.first == n - 1 && end.second == n - 1) break;
    end = pre[end.first][end.second];
  }
}

时空复杂度 O ( n 2 ) O(n^2) O(n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值