【ACWing】2188. 无源汇上下界可行流

题目地址:

https://www.acwing.com/problem/content/2190/

给定一个包含 n n n个点 m m m条边的有向图,每条边都有一个流量下界和流量上界。求一种可行方案使得在所有点满足流量平衡条件的前提下,所有边满足流量限制。

输入格式:
第一行包含两个整数 n n n m m m。接下来 m m m行,每行包含四个整数 a , b , c , d a,b,c,d a,b,c,d表示点 a a a b b b之间存在一条有向边,该边的流量下界为 c c c,流量上界为 d d d。点编号从 1 1 1 n n n

输出格式:
如果存在可行方案,则第一行输出YES,接下来 m m m行,每行输出一个整数,其中第 i i i行的整数表示输入的第 i i i条边的流量。如果不存在可行方案,直接输出一行NO。如果可行方案不唯一,则输出任意一种方案即可。

数据范围:
1 ≤ n ≤ 200 1≤n≤200 1n200
1 ≤ m ≤ 10200 1≤m≤10200 1m10200
1 ≤ a , b ≤ n 1≤a,b≤n 1a,bn
0 ≤ c ≤ d ≤ 10000 0≤c≤d≤10000 0cd10000

无源汇上下界可行流又称为循环流,像是一定量的水在水管里循环流动。由于每条边有容量下限,所以容易想到构建新的网络,将每条边的容量设为是原图的容量上下限之差,这样在新网络里任一一个可行流必然满足容量限制,但是流量守恒就不一定满足了。我们可以采用这样的方法,如果入边的总容量下限 c c c大于出边的总容量下限 c ′ c' c,那么可以从源点 S S S补充差值给这个点(即从源点到这个点开一条容量是 c − c ′ c-c' cc的边);反之,则从该点把多出来的差补给汇点 T T T(即从该点到汇点开一条容量是 c ′ − c c'-c cc的边)。题目问是否存在满足容量限制的可行流,相当于问新网络里的最大流是否可以达到源点的出边容量之和(这里有个细节,为什么我们只需要看新网络里最大流是源点出边的满流就行了呢,不需要看其是否是汇点入边的满流吗?答案是,确实不用看。原因在于,设每个点 u u u的入边容量下界之和减去出边容量下界之和等于 A [ u ] A[u] A[u],考虑 ∑ u ≠ S , T A [ u ] \sum_{u\ne S,T} A[u] u=S,TA[u],原图每条边 u → v u\to v uv的容量下界 c l c_l cl,都会使得 A [ u ] A[u] A[u]减少 c l c_l cl,也会使得 A [ v ] A[v] A[v]增加 c l c_l cl,所以 ∑ u ≠ S , T A [ u ] = 0 \sum_{u\ne S,T} A[u]=0 u=S,TA[u]=0,而 S S S出边满流就等于 ∑ u ≠ S , T ∧ A [ u ] > 0 A [ u ] \sum_{u\ne S,T\land A[u]>0}A[u] u=S,TA[u]>0A[u],其等于 T T T入边满流 − ∑ u ≠ S , T ∧ A [ u ] < 0 A [ u ] -\sum_{u\ne S,T\land A[u]<0}A[u] u=S,TA[u]<0A[u])。可以粗略的看一下对应关系,对于新网络里的任意一个满流,去掉源点和汇点(和它们连接的边)之后,将每个边里的流加一下其在原图里的下限,就得到的一个原图的可行流;对于原图的一个可行流,将每个边里的流减去其在原图里的下限,再加上源点和汇点按上述所说方式构图,就能得到新网络里的一个满流。所以问题就转化为在新网络里求最大流,可以用Dinic算法。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 210, M = (10200 + N) * 2, INF = 1e8;
int n, m, S, T;
int h[N], e[M], ne[M], f[M], l[M], idx;
int q[N], d[N], cur[N], A[N];

// 构造新网络的残留网络。每条边的容量是上限 - 下限
void add(int a, int b, int c, int d) {
    e[idx] = b, ne[idx] = h[a], f[idx] = d - c, l[idx] = c, h[a] = idx++;
    e[idx] = a, ne[idx] = h[b], f[idx] = 0, h[b] = idx++;
}

bool bfs() {
    memset(d, -1, sizeof d);
    
    int hh = 0, tt = 0;
    q[tt++] = S, d[S] = 0, cur[S] = h[S];
    while (hh < tt) {
        int t = q[hh++];
        for (int i = h[t]; ~i; i = ne[i]) {
            int v = e[i];
            if (d[v] == -1 && f[i]) {
                d[v] = d[t] + 1;
                if (v == T) return true;

                cur[v] = h[v];
                q[tt++] = v;
            }
        }
    }
    
    return false;
}

int dfs(int u, int limit) {
    if (u == T) return limit;
    int flow = 0;
    for (int i = cur[u]; ~i && flow < limit; i = ne[i]) {
        cur[u] = i;
        int v = e[i];
        if (d[v] == d[u] + 1 && f[i]) {
            int t = dfs(v, min(limit - flow, f[i]));
            if (!t) d[v] = -1;
            f[i] -= t, f[i ^ 1] += t, flow += t;
        }
    }

    return flow;
}

int dinic() {
    int r = 0, flow;
    while (bfs()) while(flow = dfs(S, INF)) r += flow;
    return r;
}

int main() {
    cin >> n >> m;
    S = 0, T = n + 1;
    memset(h, -1, sizeof h);
    for (int i = 0; i < m; i++) {
        int a, b, c, d;
        cin >> a >> b >> c >> d;
        add(a, b, c, d);
        A[a] -= c, A[b] += c;
    }

    int tot = 0;
    // 求一下满流的流量
    for (int i = 1; i <= n; i++)
        if (A[i] > 0) add(S, i, 0, A[i]), tot += A[i];
        else if (A[i] < 0) add(i, T, 0, -A[i]);

	// 如果最大流不是源点出边全满的流,则说明无解,否则输出流量
    if (dinic() < tot) cout << "NO" << endl;
    else {
        cout << "YES" << endl;
        for (int i = 0; i < m * 2; i += 2) 
        	// 流量是残留网络的反向边的容量,再加下限
            cout << f[i ^ 1] + l[i] << endl;
    }

    return 0;
}

时间复杂度 O ( n 2 m ) O(n^2m) O(n2m),空间 O ( n ) O(n) O(n)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值