【ACWing】3578. 最大中位数

题目地址:

https://www.acwing.com/problem/content/description/3581/

给定一个由 n n n个整数组成的数组 a a a,其中 n n n为奇数。你可以对其进行以下操作:选择数组中的一个元素(例如 a i a_i ai),将其增加 1 1 1(即,将其替换为 a i + 1 a_i+1 ai+1)。你最多可以进行 k k k次操作,并希望该数组的中位数能够尽可能大。奇数长度的数组的中位数是数组以非降序排序后的中间元素。例如,数组 [ 1 , 5 , 2 , 3 , 5 ] [1,5,2,3,5] [1,5,2,3,5]的中位数为 3 3 3

输入格式:
第一行包含两个整数 n n n k k k。第二行包含 n n n个整数 a 1 , a 2 , … , a n a_1,a_2,…,a_n a1,a2,,an

输出格式:
输出一个整数,表示通过操作可能得到的最大中位数。

数据范围:
对于 30 % 30\% 30%的数据, 1 ≤ n ≤ 5 1≤n≤5 1n5。对于 100 % 100\% 100%的数据, 1 ≤ n ≤ 2 × 1 0 5 1≤n≤2×10^5 1n2×105 1 ≤ k ≤ 1 0 9 1≤k≤10^9 1k109 1 ≤ a i ≤ 1 0 9 1≤a_i≤10^9 1ai109

思路是二分答案,先对 a a a进行排序,显然答案就是 [ a [ 0 ] , a [ n / 2 ] + k ] [a[0],a[n/2]+k] [a[0],a[n/2]+k]这个范围内,我们只需要对这个范围进行二分,判断要达到某个中位数所需代价是否小于等于 k k k即可。代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 2e5 + 10;
int n, k;
int a[N];

bool check(int mid) {
    int c = 0;
    for (int i = n >> 1; i < n; i++) {
        c += max(0, mid - a[i]);
        if (c > k) return false;
    }

    return true;
}

int main() {
    cin >> n >> k;
    for (int i = 0; i < n; i++) cin >> a[i];

    sort(a, a + n);
    int l = a[0], r = a[n >> 1] + k;
    while (l < r) {
        int mid = l + (r - l + 1 >> 1);
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    
    // 由于答案肯定是存在的,所以出了while不需要再判断
    cout << l << endl;

    return 0;
}

时间复杂度 O ( n ( log ⁡ n + log ⁡ r ) ) O(n(\log n+\log r)) O(n(logn+logr)) r r r是二分的搜索范围,空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值