题目地址:
https://www.acwing.com/problem/content/description/3581/
给定一个由 n n n个整数组成的数组 a a a,其中 n n n为奇数。你可以对其进行以下操作:选择数组中的一个元素(例如 a i a_i ai),将其增加 1 1 1(即,将其替换为 a i + 1 a_i+1 ai+1)。你最多可以进行 k k k次操作,并希望该数组的中位数能够尽可能大。奇数长度的数组的中位数是数组以非降序排序后的中间元素。例如,数组 [ 1 , 5 , 2 , 3 , 5 ] [1,5,2,3,5] [1,5,2,3,5]的中位数为 3 3 3。
输入格式:
第一行包含两个整数
n
n
n和
k
k
k。第二行包含
n
n
n个整数
a
1
,
a
2
,
…
,
a
n
a_1,a_2,…,a_n
a1,a2,…,an。
输出格式:
输出一个整数,表示通过操作可能得到的最大中位数。
数据范围:
对于
30
%
30\%
30%的数据,
1
≤
n
≤
5
1≤n≤5
1≤n≤5。对于
100
%
100\%
100%的数据,
1
≤
n
≤
2
×
1
0
5
1≤n≤2×10^5
1≤n≤2×105,
1
≤
k
≤
1
0
9
1≤k≤10^9
1≤k≤109,
1
≤
a
i
≤
1
0
9
1≤a_i≤10^9
1≤ai≤109。
思路是二分答案,先对 a a a进行排序,显然答案就是 [ a [ 0 ] , a [ n / 2 ] + k ] [a[0],a[n/2]+k] [a[0],a[n/2]+k]这个范围内,我们只需要对这个范围进行二分,判断要达到某个中位数所需代价是否小于等于 k k k即可。代码如下:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2e5 + 10;
int n, k;
int a[N];
bool check(int mid) {
int c = 0;
for (int i = n >> 1; i < n; i++) {
c += max(0, mid - a[i]);
if (c > k) return false;
}
return true;
}
int main() {
cin >> n >> k;
for (int i = 0; i < n; i++) cin >> a[i];
sort(a, a + n);
int l = a[0], r = a[n >> 1] + k;
while (l < r) {
int mid = l + (r - l + 1 >> 1);
if (check(mid)) l = mid;
else r = mid - 1;
}
// 由于答案肯定是存在的,所以出了while不需要再判断
cout << l << endl;
return 0;
}
时间复杂度 O ( n ( log n + log r ) ) O(n(\log n+\log r)) O(n(logn+logr)), r r r是二分的搜索范围,空间 O ( 1 ) O(1) O(1)。