【Lintcode】857. Minimum Window Subsequence

题目地址:

https://www.lintcode.com/problem/857/

给定两个字符串 s 1 s_1 s1 s 2 s_2 s2,求 s 1 s_1 s1中长度最短的子串,使 s 2 s_2 s2是它的子序列,返回该子串。若有若干长度相同的,则返回起始位置最左边的那个。

一个更好理解的序列自动机的方法可以参考https://blog.csdn.net/qq_46105170/article/details/119350139。此处介绍一种动态规划的做法。设 f [ i ] [ j ] f[i][j] f[i][j] s 1 s_1 s1的长 i i i的前缀能匹配的 s 2 s_2 s2的长 j j j的前缀最右边的匹配起始位置(找最右边是因为要找到最短的子串。这里下标从 1 1 1开始,以下的 s s s的下标也从 1 1 1开始),如果不存在匹配则返回 − 1 -1 1。则 f [ i ] [ 0 ] = i , f [ 0 ] [ . > 0 ] = − 1 f[i][0]=i,f[0][.>0]=-1 f[i][0]=i,f[0][.>0]=1,这里表示如果要匹配空串的话,直接从当前位置之后开始匹配就好了,当前位置就是最右的,这里主要是要保证 f [ . ] [ 1 ] f[.][1] f[.][1]的递推的正确性;而空串不能与非空串产生匹配。接下来考虑怎么递推。对于 f [ i ] [ j ] f[i][j] f[i][j],如果 s 1 [ i ] ≠ s 2 [ j ] s_1[i]\ne s_2[j] s1[i]=s2[j],那么说明无法产生匹配,匹配位置是 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j];如果 s 1 [ i ] = s 2 [ j ] s_1[i]= s_2[j] s1[i]=s2[j],则考虑 s 1 [ i ] s_1[i] s1[i]用不用,如果用,那么匹配起始位置就是 f [ i − 1 ] [ j − 1 ] f[i-1][j-1] f[i1][j1],如果不用,则是 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j],取更右边的,则有 f [ i ] [ j ] = max ⁡ { f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − 1 ] } f[i][j]=\max\{f[i-1][j],f[i-1][j-1]\} f[i][j]=max{f[i1][j],f[i1][j1]}。从而: f [ i ] [ j ] = { f [ i − 1 ] [ j ] , s 1 [ i ] ≠ s 2 [ j ] max ⁡ { f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − 1 ] } , s 1 [ i ] = s 2 [ j ] f[i][j]=\begin{cases} f[i-1][j],s_1[i]\ne s_2[j]\\\max\{f[i-1][j],f[i-1][j-1]\}, s_1[i]= s_2[j]\end{cases} f[i][j]={f[i1][j],s1[i]=s2[j]max{f[i1][j],f[i1][j1]},s1[i]=s2[j]最后只需要看一下 f [ i ] [ l s 2 ] f[i][l_{s_2}] f[i][ls2]所有存在的匹配的匹配起点,找到最短的子串。代码如下:

public class Solution {
    /**
     * @param s1: a string
     * @param s2: a string
     * @return: the minimum substring of s1
     */
    public String minWindow(String s1, String s2) {
        // Write your code here
        int n = s1.length(), m = s2.length(), begin = -1, minLen = n + 1;
        
        int[][] f = new int[n + 1][m + 1];
        for (int i = 0; i <= m; i++) {
            f[0][i] = i == 0 ? 0 : -1;
        }
        
        for (int i = 1; i <= n; i++) {
            for (int j = 0; j <= m; j++) {
                if (j == 0) {
                    f[i][j] = i;
                } else {
                    f[i][j] = f[i - 1][j];
                    if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
                        f[i][j] = Math.max(f[i][j], f[i - 1][j - 1]);
                    }
				}
			}
            
            if (f[i][m] != -1) {
                int len = i - f[i][m];
                if (len < minLen) {
                    minLen = len;
                    begin = f[i][m];
                }
            }
        }
        
        return begin == -1 ? "" : s1.substring(begin, begin + minLen);
    }
}

时空复杂度 O ( l s 1 l s 2 ) O(l_{s_1}l_{s_2}) O(ls1ls2)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值