题目地址:
https://www.acwing.com/problem/content/658/
读取一个带有两个小数位的浮点数,这代表货币价值。在此之后,将该值分解为多种钞票与硬币的和,每种面值的钞票和硬币使用数量不限,要求使用的钞票和硬币的数量尽可能少。钞票的面值是 100 , 50 , 20 , 10 , 5 , 2 100,50,20,10,5,2 100,50,20,10,5,2。硬币的面值是 1 , 0.50 , 0.25 , 0.10 , 0.05 1,0.50,0.25,0.10,0.05 1,0.50,0.25,0.10,0.05和 0.01 0.01 0.01。
输入格式:
输入一个浮点数
N
N
N。
输出格式:
参照输出样例,输出每种面值的钞票和硬币的需求数量。
数据范围:
0
≤
N
≤
1000000.00
0≤N≤1000000.00
0≤N≤1000000.00
思路是贪心,优先使用面额大的钞票。证明参考https://blog.csdn.net/qq_46105170/article/details/113488930。代码如下:
#include <iostream>
using namespace std;
int main() {
int a[] = {100, 50, 20, 10, 5, 2};
double b[] = {1, 0.5, 0.25, 0.1, 0.05, 0.01};
puts("NOTAS:");
double m;
cin >> m;
int n = 100 * m;
for (int i = 0; i < 6; i++) {
printf("%d nota(s) de R$ %.2lf\n", n / (a[i] * 100), (double) a[i]);
n %= (int) (a[i] * 100);
}
puts("MOEDAS:");
for (int i = 0; i < 6; i++) {
printf("%d moeda(s) de R$ %.2lf\n", n / (int) (b[i] * 100), b[i]);
n %= (int) (b[i] * 100);
}
return 0;
}
时空复杂度 O ( 1 ) O(1) O(1)。