【Lintcode】600. Smallest Rectangle Enclosing Black Pixels

题目地址:

https://www.lintcode.com/problem/600/

给定一个 m × n m\times n m×n 0 − 1 0-1 01矩阵,和其中某个 1 1 1的坐标,求最小的矩阵能覆盖所有的 1 1 1,返回其面积。题目保证矩阵里只有一个 1 1 1连通块。

参考https://blog.csdn.net/qq_46105170/article/details/108820304。代码如下:

public class Solution {
    /**
     * @param image: a binary matrix with '0' and '1'
     * @param x:     the location of one of the black pixels
     * @param y:     the location of one of the black pixels
     * @return: an integer
     */
    public int minArea(char[][] image, int x, int y) {
        int left, right, up, down;
        int l = 0, r = y;
        while (l < r) {
            int m = l + (r - l >> 1);
            if (colHas1(image, m)) {
                r = m;
            } else {
                l = m + 1;
            }
        }
    
        left = l;
    
        l = y;
        r = image[0].length - 1;
        while (l < r) {
            int m = l + (r - l + 1 >> 1);
            if (colHas1(image, m)) {
                l = m;
            } else {
                r = m - 1;
            }
        }
        right = l;
    
        l = 0;
        r = x;
        while (l < r) {
            int m = l + (r - l >> 1);
            if (rowHas1(image, m)) {
                r = m;
            } else {
                l = m + 1;
            }
        }
        up = l;
    
        l = x;
        r = image.length - 1;
        while (l < r) {
            int m = l + (r - l + 1 >> 1);
            if (rowHas1(image, m)) {
                l = m;
            } else {
                r = m - 1;
            }
        }
        down = l;
    
        return (right - left + 1) * (down - up + 1);
    }
    
    private boolean rowHas1(char[][] image, int x) {
        for (int i = 0; i < image[0].length; i++) {
            if (image[x][i] == '1') {
                return true;
            }
        }
        
        return false;
    }
    
    private boolean colHas1(char[][] image, int y) {
        for (int i = 0; i < image.length; i++) {
            if (image[i][y] == '1') {
                return true;
            }
        }
        
        return false;
    }
}

时间复杂度 O ( n log ⁡ m + m log ⁡ n ) O(n\log m+m\log n) O(nlogm+mlogn),空间 O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值