【洛谷】P2392 kkksc03考前临时抱佛脚

题目地址:

https://www.luogu.com.cn/problem/P2392

题目背景:
kkksc03的大学生活非常的颓废,平时根本不学习。但是,临近期末考试,他必须要开始抱佛脚,以求不挂科。

题目描述:
这次期末考试,kkksc03需要考 4 4 4科。因此要开始刷习题集,每科都有一个习题集,分别有 s 1 , s 2 , s 3 , s 4 s_1,s_2,s_3,s_4 s1,s2,s3,s4道题目,完成每道题目需要一些时间,可能不等( A 1 , A 2 , … , A s 1 A_1,A_2,\ldots,A_{s_1} A1,A2,,As1 B 1 , B 2 , … , B s 2 B_1,B_2,\ldots,B_{s_2} B1,B2,,Bs2 C 1 , C 2 , … , C s 3 C_1,C_2,\ldots,C_{s_3} C1,C2,,Cs3 D 1 , D 2 , … , D s 4 D_1,D_2,\ldots,D_{s_4} D1,D2,,Ds4)。
kkksc03有一个能力,他的左右两个大脑可以同时计算 2 2 2道不同的题目,但是仅限于同一科。因此kkksc03必须一科一科的复习。由于kkksc03还急着去处理洛谷的bug,因此他希望尽快把事情做完,所以他希望知道能够完成复习的最短时间。

输入格式:
本题包含 5 5 5行数据:第 1 1 1行,为四个正整数 s 1 , s 2 , s 3 , s 4 s_1,s_2,s_3,s_4 s1,s2,s3,s4
2 2 2行,为 A 1 , A 2 , … , A s 1 A_1,A_2,\ldots,A_{s_1} A1,A2,,As1​共 s 1 s_1 s1个数,表示第一科习题集每道题目所消耗的时间。
3 3 3行,为 B 1 , B 2 , … , B s 2 B_1,B_2,\ldots,B_{s_2} B1,B2,,Bs2​共 s 2 s_2 s2个数。
4 4 4行,为 C 1 , C 2 , … , C s 3 C_1,C_2,\ldots,C_{s_3} C1,C2,,Cs3​共 s 3 s_3 s3个数。
5 5 5行,为 D 1 , D 2 , … , D s 4 D_1,D_2,\ldots,D_{s_4} D1,D2,,Ds4个数,意思均同上。

输出格式:
输出一行,为复习完毕最短时间。

数据范围:
1 ≤ s 1 , s 2 , s 3 , s 4 ≤ 20 1\leq s_1,s_2,s_3,s_4\leq 20 1s1,s2,s3,s420
1 ≤ A 1 , A 2 , … , A s 1 , B 1 , B 2 , … , B s 2 , C 1 , C 2 , … , C s 3 , D 1 , D 2 , … , D s 4 ≤ 60 1\leq A_1,A_2,\ldots,A_{s_1},B_1,B_2,\ldots,B_{s_2},C_1,C_2,\ldots,C_{s_3},D_1,D_2,\ldots,D_{s_4}\leq60 1A1,A2,,As1,B1,B2,,Bs2,C1,C2,,Cs3,D1,D2,,Ds460

每门课可以分开考虑。对于每门课,要最小化耗时,就是要将这一课的习题分成两块,使得耗时大的那块的耗时尽可能小,显然要尽可能接近总耗时的一半才行,由此想到利用背包问题的求解办法,求不超过总耗时一半的情况下,最大的耗时组合,这样总耗时减去这个最大耗时组合的耗时,就是这门课的最少耗时。四门课加起来即可。代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 30, M = N * 60;
int n[4];
int a[N], f[M];
int res;

int main() {
    for (int t = 1; t <= 4; t++)
        scanf("%d", &n[t]);

    for (int t = 1; t <= 4; t++) {
        int sum = 0;
        for (int i = 1; i <= n[t]; i++) {
            scanf("%d", &a[i]);
            sum += a[i];
        }

        memset(f, 0, sizeof f);
        for (int i = 1; i <= n[t]; i++)
            for (int j = sum / 2; j >= a[i]; j--)
                f[j] = max(f[j], f[j - a[i]] + a[i]);

        res += sum - f[sum / 2];
    }

    printf("%d\n", res);

    return 0;
}

时间复杂度 O ( ∑ i = 1 4 ( s i ∑ j = 1 s i t j ) ) O(\sum_{i=1}^4( s_i\sum_{j=1}^{s_i} t_j)) O(i=14(sij=1sitj)),空间 O ( max ⁡ i ∑ j = 1 s i t j ) O(\max_i \sum_{j=1}^{s_i} t_j) O(maxij=1sitj)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值