题目地址:
https://leetcode.com/problems/domino-and-tromino-tiling/description/
给定一个
2
×
n
2\times n
2×n的矩阵,有两种类型的骨牌如下:
问要铺满矩阵,一共有多少不同的方案。答案模
1
0
9
+
7
10^9+7
109+7后返回。
假设 f [ k ] [ x ] f[k][x] f[k][x]是已经铺到了第 k k k列,并且第 k + 1 k+1 k+1列的状态为 x x x的情况下的方案数。状态 x x x是第 k k k列的形状的二进制压缩,即 0 0 0代表上下都空, 1 1 1代表上空下不空, 2 2 2代表上不空下空, 3 3 3代表都不空。那么答案就是 f [ n ] [ 0 ] f[n][0] f[n][0]。考虑状态转移然后递推一遍即可。代码如下:
class Solution {
public:
int numTilings(int n) {
const int MOD = 1e9 + 7;
vector<vector<int>> f(n + 1, vector<int>(4));
bool g[4][4] = {
{1, 1, 1, 1},
{0, 0, 1, 1},
{0, 1, 0, 1},
{1, 0, 0, 0}
};
f[0][0] = 1;
for (int i = 0; i < n; i++)
// 枚举当前状态
for (int j = 0; j < 4; j++)
// 枚举转移到的状态
for (int k = 0; k < 4; k++)
// 如果能转移,则累加方案数
if (g[j][k]) f[i + 1][k] = (f[i + 1][k] + f[i][j]) % MOD;
return f[n][0];
}
};
时空复杂度 O ( n ) O(n) O(n)。