【Leetcode】790. Domino and Tromino Tiling

题目地址:

https://leetcode.com/problems/domino-and-tromino-tiling/description/

给定一个 2 × n 2\times n 2×n的矩阵,有两种类型的骨牌如下:
在这里插入图片描述
问要铺满矩阵,一共有多少不同的方案。答案模 1 0 9 + 7 10^9+7 109+7后返回。

假设 f [ k ] [ x ] f[k][x] f[k][x]是已经铺到了第 k k k列,并且第 k + 1 k+1 k+1列的状态为 x x x的情况下的方案数。状态 x x x是第 k k k列的形状的二进制压缩,即 0 0 0代表上下都空, 1 1 1代表上空下不空, 2 2 2代表上不空下空, 3 3 3代表都不空。那么答案就是 f [ n ] [ 0 ] f[n][0] f[n][0]。考虑状态转移然后递推一遍即可。代码如下:

class Solution {
 public:
  int numTilings(int n) {
    const int MOD = 1e9 + 7;
    vector<vector<int>> f(n + 1, vector<int>(4));
    bool g[4][4] = {
      {1, 1, 1, 1},
      {0, 0, 1, 1},
      {0, 1, 0, 1},
      {1, 0, 0, 0}
    };
    f[0][0] = 1;
    for (int i = 0; i < n; i++)
      // 枚举当前状态
      for (int j = 0; j < 4; j++)
        // 枚举转移到的状态
        for (int k = 0; k < 4; k++)
          // 如果能转移,则累加方案数
          if (g[j][k]) f[i + 1][k] = (f[i + 1][k] + f[i][j]) % MOD;
    return f[n][0];
  }
};

时空复杂度 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值