题目地址:
https://leetcode.com/problems/koko-eating-bananas/description/
给定一个长 n n n数组 A A A和一个大于等于 n n n的整数 h h h, A i > 0 A_i>0 Ai>0代表香蕉个数,一个猴子可以按每小时 x x x个香蕉的速度吃每一堆香蕉,问 x x x至少是多少能 h h h小时内吃完所有香蕉。
显然 x x x越大需要的时间就越小。 x ≥ 1 x\ge 1 x≥1,并且当 x = max i A i x=\max_iA_i x=maxiAi的时候所需时间小于等于 n n n,这就是搜索范围,可以二分。代码如下:
class Solution {
public:
int minEatingSpeed(vector<int>& v, int h) {
int l = 1, r = 0;
for (int x : v) r = max(r, x);
auto check = [&](int s) {
int t = 0;
for (int x : v) t += (x + s - 1) / s;
return t <= h;
};
while (l < r) {
int mid = l + (r - l >> 1);
if (check(mid)) r = mid;
else l = mid + 1;
}
return l;
}
};
时间复杂度 O ( n log max i A i ) O(n\log \max_i A_i) O(nlogmaxiAi),空间 O ( 1 ) O(1) O(1)。