题目
给定一个整数 n,计算所有小于等于 n 的非负整数中数字 1 出现的个数。
- 示例 1:
输入:
n = 13
输出:6
- 示例 2:
输入:
n = 0
输出:0
- 提示:
0 <= n <= 10^9
解法1:
- 这种题其实就是找规律,类似于数学归纳法,找出一个计算通式可以在给出任意值时计算到目标结果
- 这道题我选择从高位往低位统计
- 首先找规律,得出不同位数1出现的次数:0位0次,1位(0-9)1次,2位(0-99)20次…
- 然后从高位开始,例如123从高位开始,依次处理 100、20、3。
- 100包含了0-99,有20个1,20包含了12个1,3包含了1个1
- 而123后面的23又为百位上的1多加了24个1,即100-123百位上共24个1,这个也要统计
class Solution {
public:
int countDigitOne(int n) {
if(!n) return 0;
vector<int> count(10, 0);
for(int i=1; i<=9; ++i){//统计不同位数的1出现的次数,0位0次,1位(0-9)1次,2位(0-99)20次...
count[i]=i*pow(10, i-1);
}
// for(auto &ele:count) cout << ele << endl;
int numDigits = (int)log10(n) + 1; // 获取数字的位数
cout << numDigits << endl;
int ans=0;
for (int i = numDigits-1; i >= 0; i--) {//从高位开始统计
int powerOf10 = (int)pow(10, i);
int digit = n / powerOf10; // 获取当前位的数字
if(digit==0) continue; //处理类似102这种情况中间的0
ans+=digit*count[i];
n %= powerOf10; // 移除当前位
//如123,23让1多出现了24次(100-123),而423是百位上的1固定出现了100次(101-199)
digit<=1 ? ans=ans+n+1 : ans+=powerOf10;
}
return ans;
}
};
解法2:
- 另一种解法是统计当前位上,1出现了多少次
- 当当前位上为0时,其出现1的次数由高位确定,如1203,十位上1出现的次数由十位以上确定,此处出现了12*10=120次
- 当当前位上为1时,其出现1的次数为高位+低位共同确定,如1213,出现了12*10+3+1=124次
- 当当前位上位2-9时,其出现1的次数也只由高位确定,如1243,十位上1出现次数为 (12+1)*10=130次
class Solution {
public:
int countDigitOne(int n) {
long currentDigit = 1; // 当前位的权值,最低位开始
int high = n / 10, cur = n % 10, low = 0, count = 0; // 初始化高位、当前位、低位、结果个数
while (high != 0 || cur != 0) {
if (cur == 0) {
// 当前位为0时,结果由高位决定
count += high * currentDigit;
} else if (cur == 1) {
// 当前位为1时,结果由高位和低位共同决定
count += high * currentDigit + low + 1;
} else {
// 当前位大于1时,结果由高位决定
count += (high + 1) * currentDigit;
}
// 更新低位并跳到下一位
low += cur * currentDigit;
cur = high % 10;
high /= 10;
currentDigit *= 10; // 更新位数权值
}
return count;
}
};