Python爬虫技术之cfscrape库的相关知识(绕过5秒机器人检测)

一、关于cfscrape库

cfscrape准确来说是用来绕过机器人协议及检测的,有些网站会在机器人协议里表明哪些网址可以爬,哪些不能爬,当然作为君子协议,本身是没有太大约束的,但是对于新手而言,却十分痛苦,因为协议的原因,导致网站不能正常爬取,所以就发现了一个宝藏模块cfscrape,当然就算绕过机器人协议,后续也会遇到更多的反爬手段,因为一般网站不会详细设置机器人协议的,如果设置了,大概率会增加很多反爬措施,不然没理由就设置个机器人协议,咳咳咳,懂得都懂。当然现在仅此讲cfscrape库。

1、机器人协议

1.1 基本概念

一般爬虫开始,返回的状态码是200,代表目前是正常的,可以继续爬取,但如果机器人协议恰好把你的网址某一段给禁止的话,估计就会报503错误。
在这里插入图片描述

1.2 查看机器人协议

1.2.1 格式

网址+.robots.txt

1.2.2 例如百度的机器人协议
https://www.baidu.com/robots.txt

在这里插入图片描述
等等。。。。
因此为了绕过机器人协议及五秒检测。便有了cfscrape模块

2、cfscrape的安装及使用

2.1 官方文档网址

链接: cfscrape 2.1.1文档
其实官方文档写得很详细。

2.2 操作命令

(1)直接安装库

pip install cfscrape

(2)如果用pycharm或IDEA做的话,让软件自动导入就可以了。

2.3 python版本要求

Python versions 2.6 - 3.7 ,其它的都用不了

二、使用cfscrape库

1、相关代码

# 绕过机器人验证
scraper = cfscrape.create_scraper()

# 抓取网站的URL地址,设置最大响应时间为60
rsp = scraper.get(url, timeout=60)

#查看状态码
print("状态码是:" + str(rsp.status_code))

#获取网站源码
webdata = scraper.get("http://somesite.com").content

后续再配合Beautiful Soup库 或者 Selenium库都可以爬取,之后就看自己能力了。

2、注意

爬虫归爬虫,我们一定要遵纪守法,不给相关网站人员添麻烦,找trouble,遵守底线。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

熊凯瑞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值