【多元统计分析】07.均值的假设检验

七、均值的假设检验

1.单总体均值向量假设检验

本节探讨单个 p p p元正态总体 N p ( μ , Σ ) N_p(\mu,\Sigma) Np(μ,Σ)的均值假设检验问题,可以具体地细分为 Σ \Sigma Σ已知和 Σ \Sigma Σ未知的情形,当然,生活中大多的正态总体是 Σ \Sigma Σ未知的。我们需要检验的问题是: H 0 : μ = μ 0 ⇔ H 1 : μ ≠ μ 0 H_0:\mu=\mu_0\Leftrightarrow H_1:\mu\ne \mu_0 H0:μ=μ0H1:μ=μ0

Σ = Σ 0 \Sigma=\Sigma_0 Σ=Σ0时,有 X ˉ ∼ N p ( μ , Σ 0 / n ) \bar X\sim N_p(\mu,\Sigma_0/n) XˉNp(μ,Σ0/n),所以 n ( X ˉ − μ ) ∼ N p ( 0 , Σ ) \sqrt n(\bar X-\mu)\sim N_p(0,\Sigma) n (Xˉμ)Np(0,Σ),故
T 0 2 = n ( X ˉ − μ 0 ) ′ Σ − 1 ( X ˉ − μ 0 ) ∼ H 0 χ 2 ( p ) . T_0^2=n(\bar X-\mu_0)'\Sigma^{-1} (\bar X-\mu_0)\stackrel {H_0}\sim \chi^2(p). T02=n(Xˉμ0)Σ1(Xˉμ0)H0χ2(p).
显然检验的拒绝域是 { T 0 2 > χ α 2 ( p ) } \{T_0^2>\chi^2_\alpha(p)\} {T02>χα2(p)},检验的p-value是 p = P ( T 0 2 ≥ d ) p={\rm P}(T_0^2\ge d) p=P(T02d),这里 d d d T 0 2 T_0^2 T02的观测值。

Σ \Sigma Σ未知时, X ˉ ∼ N p ( μ , Σ / n ) , A ∼ W p ( n , Σ ) \bar X\sim N_p(\mu,\Sigma/n),A\sim W_p(n,\Sigma) XˉNp(μ,Σ/n),AWp(n,Σ),所以
T 2 = n ( X ˉ − μ 0 ) ′ S − 1 ( X ˉ − μ 0 ) ∼ H 0 T 2 ( p , n − 1 ) , n − p ( n − 1 ) p T 2 ∼ F ( p , n − p ) . T^2=n(\bar X-\mu_0)'S^{-1}(\bar X-\mu_0)\stackrel {H_0}\sim T^2(p,n-1),\\ \frac{n-p}{(n-1)p}T^2\sim F(p,n-p). T2=n(Xˉμ0)S1(Xˉμ0)H0T2(p,n1),(n1)pnpT2F(p,np).
于是检验的拒绝域是 { T 2 > ( n − 1 ) p n − p F α } \{T^2>\frac{(n-1)p}{n-p}F_\alpha \} {T2>np(n1)pFα}

如果在此基础上要检验的问题改为 μ \mu μ服从某种线性约束,就可以将检验问题改为 H 0 : C μ = r H_0:C\mu=r H0:Cμ=r,这里 C C C是一个 k × p k\times p k×p矩阵,秩为 k < p k<p k<p。此时对所有的样本做线性变换 Y ( α ) = C X ( α ) Y_{(\alpha)}=CX_{(\alpha)} Y(α)=CX(α),这样 Y ˉ = C X ˉ ∼ N p ( C μ , C Σ C ′ n ) , A y ∼ W p ( n , C Σ C ′ ) \bar Y=C\bar X\sim N_p(C\mu,\frac{C\Sigma C'}n),A_y\sim W_p(n,C\Sigma C') Yˉ=CXˉNp(Cμ,nCΣC),AyWp(n,CΣC),于是
T 2 = n ( Y ˉ − r ) ′ S y − 1 ( Y ˉ − r ) ∼ H 0 T 2 ( k , n − 1 ) . T^2=n(\bar Y-r)'S_y^{-1}(\bar Y-r)\stackrel {H_0}\sim T^2(k,n-1). T2=n(Yˉr)Sy1(Yˉr)H0T2(k,n1).
类似地拒绝域是 { T 2 > ( n − 1 ) k n − k F α } \{T^2>\frac{(n-1)k}{n-k}F_\alpha\} {T2>nk(n1)kFα}

2.双总体均值向量的假设检验

在多总体的情况下,类似一元总体,比较简单的是两个总体有相同自协方差矩阵的情形,而如果两个总体自协方差矩阵不同,则会更麻烦。设 X ( α ) ∼ N p ( μ ( 1 ) , Σ ) , Y ( α ) ∼ N p ( μ ( 2 ) , Σ ) X_{(\alpha)}\sim N_p(\mu^{(1)},\Sigma),Y_{(\alpha)}\sim N_p(\mu^{(2)},\Sigma) X(α)Np(μ(1),Σ),Y(α)Np(μ(2),Σ),样本容量分别为 n , m n,m n,m,检验的问题是 H 0 : μ ( 1 ) = μ ( 2 ) ⇔ H 1 : μ ( 1 ) ≠ μ ( 2 ) H_0:\mu^{(1)}=\mu^{(2)}\Leftrightarrow H_1:\mu^{(1)}\ne \mu^{(2)} H0:μ(1)=μ(2)H1:μ(1)=μ(2)

在一元总体时,检验统计量为
t = X ˉ − Y ˉ ∑ i = 1 n ( X i − X ˉ ) 2 + ∑ j = 1 n ( Y i − Y ˉ ) 2 n + m − 2 1 n + 1 m ∼ H 0 t ( m + n − 2 ) . t=\frac{\bar X-\bar Y}{\sqrt{\sum_{i=1}^n (X_i-\bar X)^2+\sum_{j=1}^n(Y_i-\bar Y)^2}}\sqrt{\frac{n+m-2}{\frac 1n+\frac 1m}}\stackrel {H_0}\sim t(m+n-2). t=i=1n(XiXˉ)2+j=1n(YiYˉ)2 XˉYˉn1+m1n+m2 H0t(m+n2).
类似前面的处理,我们化 t t t t 2 t^2 t2,进行如下一元到多元的推广:
T 2 = n m n + m ( X ˉ − Y ˉ ) ′ ( A 1 + A 2 n + m − 2 ) − 1 ( X ˉ − Y ˉ ) ∼ H 0 T 2 ( p , n + m − 2 ) . T^2=\frac{nm}{n+m}(\bar X-\bar Y)'\left(\frac{A_1+A_2}{n+m-2} \right)^{-1}(\bar X-\bar Y)\stackrel {H_0}\sim T^2(p,n+m-2). T2=n+mnm(XˉYˉ)(n+m2A1+A2)1(XˉYˉ)H0T2(p,n+m2).
这里 A 1 , A 2 A_1,A_2 A1,A2分别是两个总体的样本离差阵。接下来对此结论进行证明。

因为在假设 H 0 H_0 H0下, X ˉ − Y ˉ ∼ N p ( 0 , ( 1 n + 1 m ) Σ ) \bar X-\bar Y\sim N_p(0,(\frac 1n+\frac 1m)\Sigma) XˉYˉNp(0,(n1+m1)Σ),所以
n + m n m ( X ˉ − Y ˉ ) ∼ N p ( 0 , Σ ) . \sqrt{\frac{n+m}{nm}}(\bar X-\bar Y)\sim N_p(0,\Sigma). nmn+m (XˉYˉ)Np(0,Σ).
因为在假设 H 0 H_0 H0下, A 1 ∼ W p ( n − 1 , Σ ) , A 2 ∼ W p ( m − 1 , Σ ) A_1\sim W_p(n-1,\Sigma),A_2\sim W_p(m-1,\Sigma) A1Wp(n1,Σ),A2Wp(m1,Σ),所以由Wishart分布的可加性,有
A 1 + A 2 ∼ W p ( n + m − 2 , Σ ) . A_1+A_2\sim W_p(n+m-2,\Sigma). A1+A2Wp(n+m2,Σ).
结合以上两点,我们得到 T 2 ∼ H 0 T 2 ( p , n + m − 2 ) T^2\stackrel {H_0}\sim T^2(p,n+m-2) T2H0T2(p,n+m2)的结论,所以
n + m − p − 1 ( n + m − 2 ) p T 2 ∼ F ( p , n + m − p − 1 ) . \frac{n+m-p-1}{(n+m-2)p}T^2\sim F(p,n+m-p-1). (n+m2)pn+mp1T2F(p,n+mp1).
于是拒绝域为
{ T 2 > ( n + m − 2 ) p n + m − p − 1 F α } . \left\{T^2>\frac{(n+m-2)p}{n+m-p-1}F_{\alpha} \right\}. {T2>n+mp1(n+m2)pFα}.
如果两个总体协方差阵不等,但样本容量相等,则可以构造 Z ( α ) = X ( α ) − Y ( α ) Z_{(\alpha)}=X_{(\alpha)}-Y_{(\alpha)} Z(α)=X(α)Y(α)进行成对数据的等均值检测。如果两个总体甚至样本容量也不等,则要保留尽可能多的信息则会有些麻烦。课本中提到如下构造方式:
Z ( i ) = X ( i ) − n m Y ( i ) + 1 n m ∑ j = 1 n Y ( j ) − 1 m ∑ j = 1 m Y ( j ) . Z_{(i)}=X_{(i)}-\sqrt{\frac nm}Y_{(i)}+\frac1{\sqrt {nm}}\sum_{j=1}^nY_{(j)}-\frac 1m\sum_{j=1}^m Y_{(j)}. Z(i)=X(i)mn Y(i)+nm 1j=1nY(j)m1j=1mY(j).
这样构造出来的 Z ( i ) Z_{(i)} Z(i)独立同分布与 N p ( μ ( 1 ) − μ ( 2 ) , Σ 1 + n m Z 2 ) N_p(\mu^{(1)}-\mu^{(2)},\Sigma_1+\frac nm Z_2) Np(μ(1)μ(2),Σ1+mnZ2)

3.多总体均值向量的假设检验

k k k个同方差的 p p p元正态总体 N p ( μ ( t ) , Σ ) N_p(\mu^{(t)},\Sigma) Np(μ(t),Σ),从第 t t t个总体中抽取 n t n_t nt个样本 X ( α ) ( 1 ) X_{(\alpha)}^{(1)} X(α)(1),需要检验的假设是
H 0 : μ ( 1 ) = ⋯ = μ ( k ) ⇔ H 1 : ∃ i ≠ j , μ ( i ) ≠ μ ( j ) . H_0:\mu^{(1)}=\cdots =\mu^{(k)}\Leftrightarrow H_1:\exist i\ne j,\mu^{(i)}\ne \mu^{(j)}. H0:μ(1)==μ(k)H1:i=j,μ(i)=μ(j).
我们先讨论一维的情形。当 p = 1 p=1 p=1时,我们将每一个总体中的样本排在一行中,即将样本排成
X ( 1 ) ( 1 ) X ( 2 ) ( 1 ) ⋯ X ( n 1 ) ( 1 ) , X ( 1 ) ( 2 ) X ( 2 ) ( 2 ) ⋯ X ( n 2 ) ( 2 ) , ⋯ ⋯ ⋯ ⋯ X ( 1 ) ( k ) X ( 2 ) ( k ) ⋯ X ( n k ) ( k ) . \begin{matrix} X_{(1)}^{(1)} & X_{(2)}^{(1)} & \cdots & X_{(n_1)}^{(1)},\\ X_{(1)}^{(2)} & X_{(2)}^{(2)} & \cdots & X_{(n_2)}^{(2)},\\ \cdots &\cdots&\cdots&\cdots \\ X_{(1)}^{(k)} & X_{(2)}^{(k)} & \cdots & X_{(n_k)}^{(k)}. \end{matrix} X(1)(1)X(1)(2)X(1)(k)X(2)(1)X(2)(2)X(2)(k)X(n1)(1),X(n2)(2),X(nk)(k).
n = ∑ t = 1 k n t n=\sum _{t=1}^k n_t n=t=1knt
X ˉ = 1 n ∑ t = 1 k ∑ i = 1 n t X ( i ) ( t ) , X ˉ ( t ) = 1 n t ∑ i = 1 n t X ( i ) ( t ) . \bar X=\frac 1n\sum_{t=1}^k \sum_{i=1}^{n_t} X_{(i)}^{(t)},\quad \bar X^{(t)}=\frac{1}{n_t}\sum_{i=1}^{n_t} X_{(i)}^{(t)}. Xˉ=n1t=1ki=1ntX(i)(t),Xˉ(t)=nt1i=1ntX(i)(t).
X ˉ \bar X Xˉ是所有样本的均值, X ˉ ( t ) \bar X^{(t)} Xˉ(t)是从 t t t总体抽取的样本均值。记
S S T = ∑ t = 1 k ∑ i = 1 n t ( X ( i ) ( t ) − X ˉ ) 2 ; — — 总 偏 差 平 方 和 , S S E = ∑ t = 1 k ∑ i = 1 n t ( X ( i ) ( t ) − X ˉ ( t ) ) 2 — — 组 内 偏 差 平 方 和 , S S A = ∑ t = 1 k n t ( X ˉ ( t ) − X ˉ ) 2 — — 组 间 偏 差 平 方 和 , {\rm SST}=\sum_{t=1}^k\sum_{i=1}^{n_t}(X_{(i)}^{(t)}-\bar X)^2;——总偏差平方和,\\ {\rm SSE}=\sum_{t=1}^{k}\sum_{i=1}^{n_t}(X_{(i)}^{(t)}-\bar X^{(t)})^2——组内偏差平方和,\\ {\rm SSA}=\sum_{t=1}^k n_t(\bar X^{(t)}-\bar X)^2——组间偏差平方和, SST=t=1ki=1nt(X(i)(t)Xˉ)2;,SSE=t=1ki=1nt(X(i)(t)Xˉ(t))2,SSA=t=1knt(Xˉ(t)Xˉ)2,
则有 S S T = S S E + S S A {\rm SST=SSE+SSA} SST=SSE+SSA。如果 H 0 H_0 H0成立,则组间偏差平方和 S S A {\rm SSA} SSA应该很小,所以取检验统计量为
F = S S A / ( k − 1 ) S S E / ( n − k ) ∼ H 0 F ( k − 1 , n − k ) . F=\frac{{\rm SSA}/(k-1)}{{\rm SSE}/(n-k)}\stackrel {H_0}\sim F(k-1,n-k). F=SSE/(nk)SSA/(k1)H0F(k1,nk).

引理:这里在 H 0 H_0 H0成立的条件下,也就是所有的 X ( i ) ( t ) ∼ N ( μ , σ 2 ) X_{(i)}^{(t)}\sim N(\mu,\sigma^2) X(i)(t)N(μ,σ2),则有:

  1. S S E σ 2 ∼ χ 2 ( n − k ) \dfrac{{\rm SSE}}{\sigma^2}\sim \chi^2(n-k) σ2SSEχ2(nk)
  2. S S A σ 2 ∼ χ 2 ( k − 1 ) \dfrac{\rm SSA}{\sigma^2}\sim \chi^2(k-1) σ2SSAχ2(k1)
  3. S S E , S S A {\rm SSE,SSA} SSE,SSA相互独立;
  4. S S T σ 2 ∼ χ 2 ( n − 1 ) \dfrac{\rm SST}{\sigma^2}\sim \chi^2(n-1) σ2SSTχ2(n1)

自然而然得到拒绝域为 { F > F α } \{F>F_\alpha\} {F>Fα},这里 F α F_\alpha Fα F ( k − 1 , n − k ) F(k-1,n-k) F(k1,nk)的上 α \alpha α分位数。

而如果推广到 p p p元总体,则类似地可以对总离差阵进行分解,为
T = ∑ t = 1 k ∑ i = 1 n t ( X ( i ) ( t ) − X ˉ ) ( X ( i ) ( t ) − X ˉ ) ′ = A + B , A = ∑ t = 1 k A t = ∑ t = 1 k ∑ i = 1 n t ( X ( i ) ( t ) − X ˉ ( t ) ) ( X ( i ) ( t ) − X ˉ ( t ) ) ′ , B = ∑ t = 1 k n t ( X ˉ ( t ) − X ˉ ) ( X ˉ ( t ) − X ˉ ) ′ . T=\sum_{t=1}^k\sum_{i=1}^{n_t}(X_{(i)}^{(t)}-\bar X)(X_{(i)}^{(t)}-\bar X)'=A+B,\\ A=\sum_{t=1}^k A_t=\sum_{t=1}^k \sum_{i=1}^{n_t}(X_{(i)}^{(t)}-\bar X^{(t)})(X_{(i)}^{(t)}-\bar X^{(t)})',\\ B=\sum_{t=1}^k n_t(\bar X^{(t)}-\bar X)(\bar X^{(t)}-\bar X)'. T=t=1ki=1nt(X(i)(t)Xˉ)(X(i)(t)Xˉ)=A+B,A=t=1kAt=t=1ki=1nt(X(i)(t)Xˉ(t))(X(i)(t)Xˉ(t)),B=t=1knt(Xˉ(t)Xˉ)(Xˉ(t)Xˉ).
T T T为总离差阵, A A A为组内离差阵, B B B为组间离差阵。与一元情况类似地有
A ∼ H 0 W p ( n − k , Σ ) , B ∼ H 0 W p ( k − 1 , Σ ) , A\stackrel {H_0}\sim W_p(n-k,\Sigma),B\stackrel {H_0}\sim W_p(k-1,\Sigma), AH0Wp(nk,Σ),BH0Wp(k1,Σ),
A , B A,B A,B相互独立,所以类似地建立统计量为
Λ = ∣ A ∣ ∣ A + B ∣ = ∣ A ∣ ∣ T ∣ ∼ H 0 Λ ( p , n − k , k − 1 ) . \Lambda=\frac{|A|}{|A+B|}=\frac{|A|}{|T|}\stackrel {H_0}\sim \Lambda(p,n-k,k-1). Λ=A+BA=TAH0Λ(p,nk,k1).
这里 n n n是总样本数, k k k是总组数, p p p是向量维数。拒绝域就应该是 { Λ < Λ α } \{\Lambda <\Lambda_\alpha\} {Λ<Λα},而 Λ \Lambda Λ统计量可以用 χ 2 \chi^2 χ2统计量或 F F F统计量来近似替代,即
− r ln ⁡ Λ ∼ χ 2 ( p n 2 ) , r = n 1 − 1 2 ( p − n 2 + 1 ) . -r\ln \Lambda\sim \chi^2(pn_2),\quad r=n_1-\frac 12(p-n_2+1). rlnΛχ2(pn2),r=n121(pn2+1).
但一般情况下,我们只会检验三组同均值问题,也就是 μ ( 1 ) = μ ( 2 ) = μ ( 3 ) \mu^{(1)}=\mu^{(2)}=\mu^{(3)} μ(1)=μ(2)=μ(3)的检验,此时 k = 3 k=3 k=3 Λ \Lambda Λ分布可以转化为 F F F统计量,即
Λ ( p , n − 3 , 2 ) : n − 3 − p + 1 n − 3 1 − Λ Λ ∼ F ( 2 p , 2 ( n − 3 − p + 1 ) ) . \Lambda(p,n-3,2):\frac{n-3-p+1}{n-3}\frac{1-\sqrt \Lambda}{\sqrt\Lambda}\sim F(2p,2(n-3-p+1)). Λ(p,n3,2):n3n3p+1Λ 1Λ F(2p,2(n3p+1)).
所以拒绝域是 { F > F α } \{F>F_\alpha\} {F>Fα} F α F_\alpha Fα F ( 2 p , 2 ( n − 3 − p + 1 ) ) F(2p,2(n-3-p+1)) F(2p,2(n3p+1))的上 α \alpha α分位数。

回顾总结

  1. 单总体 N p ( μ , Σ ) N_p(\mu,\Sigma) Np(μ,Σ)情况检验 H 0 : μ = μ 0 H_0:\mu=\mu_0 H0:μ=μ0,如果 Σ \Sigma Σ未知,构造的检验统计量是
    T 2 = n ( X ˉ − μ 0 ) S − 1 ( X ˉ − μ 0 ) ∼ H 0 T 2 ( p , n − 1 ) . T^2=n(\bar X-\mu_0)S^{-1}(\bar X-\mu_0)\stackrel {H_0}\sim T^2(p,n-1). T2=n(Xˉμ0)S1(Xˉμ0)H0T2(p,n1).
    如果 Σ = Σ 0 \Sigma=\Sigma_0 Σ=Σ0已知,构造的检验统计量是
    T 2 = n ( X ˉ − μ 0 ) Σ 0 − 1 ( X ˉ − μ 0 ) ∼ H 0 T 2 ( p , n ) . T^2=n(\bar X-\mu_0)\Sigma_0^{-1}(\bar X-\mu_0)\stackrel {H_0}\sim T^2(p,n). T2=n(Xˉμ0)Σ01(Xˉμ0)H0T2(p,n).

  2. 双同方差总体 N p ( μ ( 1 ) , Σ ) , N p ( μ ( 2 ) , Σ ) N_p(\mu^{(1)},\Sigma),N_p(\mu^{(2)},\Sigma) Np(μ(1),Σ),Np(μ(2),Σ)情况检验 μ ( 1 ) = μ ( 2 ) \mu^{(1)}=\mu^{(2)} μ(1)=μ(2),构造的检验统计量是
    T 2 = n m n + m ( X ˉ − Y ˉ ) ′ ( A 1 + A 2 n + m − 2 ) ( X ˉ − Y ˉ ) ∼ H 0 T 2 ( p , n + m − 2 ) . T^2=\frac{nm}{n+m}(\bar X-\bar Y)'\left(\frac{A_1+A_2}{n+m-2} \right)(\bar X-\bar Y)\stackrel {H_0}\sim T^2(p,n+m-2). T2=n+mnm(XˉYˉ)(n+m2A1+A2)(XˉYˉ)H0T2(p,n+m2).

  3. 如果双总体方差不同为 N p ( μ ( 1 ) , Σ 1 ) , N p ( μ ( 2 ) , Σ 2 ) N_p(\mu^{(1)},\Sigma_1),N_p(\mu^{(2)},\Sigma_2) Np(μ(1),Σ1),Np(μ(2),Σ2),成对数据则构造 Z ( α ) = X ( α ) − Y ( α ) Z_{(\alpha)}=X_{(\alpha)}-Y_{(\alpha)} Z(α)=X(α)Y(α),如果不是成对数据,则进行以下处理(设 n < m n<m n<m
    Z ( α ) = X ( α ) − n m Y ( α ) + 1 m n ∑ i = 1 n Y ( i ) − 1 m ∑ i = 1 m Y ( i ) Z_{(\alpha)}=X_{(\alpha)}-\sqrt{\frac nm}Y_{(\alpha)}+\sqrt{\frac 1{mn}}\sum_{i=1}^n Y_{(i)}-\frac 1m\sum_{i=1}^m Y_{(i)} Z(α)=X(α)mn Y(α)+mn1 i=1nY(i)m1i=1mY(i)
    得到的 Z ( α ) Z_{(\alpha)} Z(α)是相互独立,服从 N p ( μ Z , Σ Z ) N_p(\mu_Z,\Sigma_Z) Np(μZ,ΣZ),这里 μ Z = μ ( 1 ) − μ ( 2 ) \mu_Z=\mu^{(1)}-\mu^{(2)} μZ=μ(1)μ(2) Σ Z = Z 1 + n m Z 2 \Sigma_Z=Z_1+\frac nmZ_2 ΣZ=Z1+mnZ2

  4. 多总体同方差情况,总体为 N p ( μ ( t ) , Σ ) , t = 1 , ⋯   , k N_p(\mu^{(t)},\Sigma),t=1,\cdots,k Np(μ(t),Σ),t=1,,k,每个总体中抽取 n t n_t nt件样本,检验 μ ( 1 ) = ⋯ = μ ( k ) \mu^{(1)}=\cdots =\mu^{(k)} μ(1)==μ(k),构造的检验统计量是
    Λ = ∣ A ∣ ∣ A + B ∣ = ∣ A ∣ ∣ T ∣ ∼ H 0 Λ ( p , n − k , k − 1 ) . \Lambda=\frac{|A|}{|A+B|}=\frac{|A|}{|T|}\stackrel {H_0}\sim \Lambda(p,n-k,k-1). Λ=A+BA=TAH0Λ(p,nk,k1).
    这里 n n n为总样本容量, A A A是组内离差阵, T T T为总离差阵,若设 X ˉ \bar X Xˉ为总均值, X ˉ ( t ) \bar X^{(t)} Xˉ(t)是第 t t t组均值,则
    n = ∑ t = 1 k n t , A = ∑ t = 1 k ∑ i = 1 n t ( X ( i ) ( t ) − X ˉ ( t ) ) ( X ( i ) ( t ) − X ˉ ( t ) ) ′ , B = ∑ t = 1 k n t ( X ˉ ( t ) − X ˉ ) 2 , T = ∑ t = 1 k ∑ i = 1 n t ( X ( i ) ( t ) − X ˉ ) ( X ( i ) ( t ) − X ˉ ) ′ . n=\sum_{t=1}^k n_t,\\ A=\sum_{t=1}^k \sum_{i=1}^{n_t}(X_{(i)}^{(t)}-\bar X^{(t)})(X_{(i)}^{(t)}-\bar X^{(t)})',\\ B=\sum_{t=1}^k n_t(\bar X^{(t)}-\bar X)^2,\\ T=\sum_{t=1}^k \sum_{i=1}^{n_t}(X_{(i)}^{(t)}-\bar X)(X_{(i)}^{(t)}-\bar X)'. n=t=1knt,A=t=1ki=1nt(X(i)(t)Xˉ(t))(X(i)(t)Xˉ(t)),B=t=1knt(Xˉ(t)Xˉ)2,T=t=1ki=1nt(X(i)(t)Xˉ)(X(i)(t)Xˉ).

  5. 本节中常用的转换公式:
    T 2 ( p , n − 1 ) : n − p ( n − 1 ) p T 2 ∼ F ( p , n − p ) . T 2 ( p , n + m − 2 ) : n + m − 1 − p ( n + m − 2 ) p T 2 ∼ F ( p , n + m − 1 − p ) . Λ ( p , n − 3 , 2 ) : n − 3 − p + 1 n − p 1 − Λ Λ ∼ F ( 2 p , 2 ( n − 3 − p + 1 ) ) . \begin{array}l T^2(p,n-1):\dfrac{n-p}{(n-1)p}T^2\sim F(p,n-p). \\ T^2(p,n+m-2):\dfrac{n+m-1-p}{(n+m-2)p}T^2\sim F(p,n+m-1-p). \\ \Lambda(p,n-3,2):\dfrac{n-3-p+1}{n-p}\dfrac{1-\sqrt\Lambda}{\sqrt \Lambda}\sim F(2p,2(n-3-p+1)). \end{array} T2(p,n1):(n1)pnpT2F(p,np).T2(p,n+m2):(n+m2)pn+m1pT2F(p,n+m1p).Λ(p,n3,2):npn3p+1Λ 1Λ F(2p,2(n3p+1)).

  • 3
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值